江苏省盐城市2018年中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.-2018的相反数是()A.2018B.-2018C.12018D.120182.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.224aaaB.33aaaC.235aaaD.246()aa4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A.51.4610B.60.14610C.61.4610D.3146105.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A.B.C.D.6.一组数据2,4,6,4,8的中位数为()A.2B.4C.6D.87.如图,AB为O的直径,CD是O的弦,35ADC,则CAB的度数为()A.35B.45C.55D.658.已知一元二次方程230xkx有一个根为1,则k的值为()A.-2B.2C.-4D.4二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.根据如图所示的车票信息,车票的价格为元.10.要使分式12x有意义,则x的取值范围是.11.分解因式:221xx.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为.13.将一个含有45角的直角三角板摆放在矩形上,如图所示,若140,则2.14.如图,点D为矩形OABC的AB边的中点,反比例函数(0)kyxx的图象经过点D,交BC边于点E.若BDE的面积为1,则k。15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径2OAcm,120AOB.则右图的周长为cm(结果保留).16.如图,在直角ABC中,90C,6AC,8BC,P、Q分别为边BC、AB上的两个动点,若要使APQ是等腰三角形且BPQ是直角三角形,则AQ.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)17.计算:0131()82.18.解不等式:312(1)xx,并把它的解集在数轴上表示出来.19.先化简,再求值:21(1)11xxx,其中21x.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BEDF,连接AE、AF、CE、CF,如图所示.(1)求证:ABEADF;(2)试判断四边形AECF的形状,并说明理由.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了_______名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为_______件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当t_______分钟时甲乙两人相遇,甲的速度为_______米/分钟;(2)求出线段AB所表示的函数表达式.25.如图,在以线段AB为直径的O上取一点,连接AC、BC.将ABC沿AB翻折后得到ABD.(1)试说明点D在O上;(2)在线段AD的延长线上取一点E,使2ABACAE.求证:BE为O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若2BC,4AC,求线段EF的长.26.【发现】如图①,已知等边ABC,将直角三角形的60角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若6AB,4AE,2BD,则CF_______;(2)求证:EBDDCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分BEF且FD平分CFE?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰ABC中,ABAC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中MONB),使两条边分别交边AB、AC于点E、F(点E、F均不与ABC的顶点重合),连接EF.设B,则AEF与ABC的周长之比为________(用含的表达式表示).27.如图①,在平面直角坐标系xOy中,抛物线23yaxbx经过点(1,0)A、(3,0)B两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(Ⅰ)若点P的横坐标为12,求DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.答案解析部分一、选择题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-2018的相反数是2018。故答案为A【分析】负数的相反数是它的绝对值;-2018只要去掉负号就是它的相反数2.【答案】D【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A、既不是轴对称图形,也不是中心对称图形,故A不符合题意;B、是轴对称图形,但不是中心对称图形,故B不符合题意;C、是轴对称图形,但不是中心对称图形,故C不符合题意;D、是轴对称图形,但不是中心对称图形,故D符合题意;故答案为:D【分析】轴对称图形:沿着一条线折叠能够完全重合的图形;中心对称图形:绕着某一点旋转180°能够与自身重合的图形;根据定义逐个判断即可。3.【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用【解析】【解答】解:A、,故A不符合题意;B、,故B不符合题意;C.,故C符合题意;D.,故D不符合题意;故答案为:C【分析】根据合并同类项法则、同底数幂的乘除法则即可。4.【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:146000=1.46=故答案为:A【分析】用科学记数法表示绝对值较大的数,即表示为,其中1≤|a|10,且n为正整数.5.【答案】B【考点】简单几何体的三视图【解析】【解答】解:从左面看到的图形是故答案为:B【分析】在侧投影面上的正投影叫做左视图;观察的方法是:从左面看几何体得到的平面图形。6.【答案】B【考点】中位数【解析】【解答】这组数据从小到大排列为:2,4,4,5,8,最中间的数是第3个是4,故答案为:B【分析】中位数是一组数中最中间的一个数(数据是奇数个)或是最中间两个数的平均数(数据是偶数个);这组数据一共有5个,是奇数个,那么把这组数据从小到大排列,第个数就是中位数。7.【答案】C【考点】圆周角定理【解析】【解答】解:∵,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故答案为:C【分析】由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得。8.【答案】B【考点】一元二次方程的根【解析】【解答】解:把x=1代入方程可得1+k-3=0,解得k=2。故答案为:B【分析】将x=1代入原方程可得关于k的一元一次方程,解之即可得k的值。二、填空题9.【答案】77.5【考点】有理数及其分类【解析】【解答】解:车票上有“¥77.5元”,那么车票的价格是77.5元。故答案为:77.5【分析】根据车票信息中的价格信息可知。10.【答案】2【考点】分式有意义的条件【解析】【解答】解:要使分式有意义,即分母x-2≠0,则x≠2。故答案为:2【分析】分式有意义的条件是分母不为0:令分母的式子不为0,求出取值范围即可。11.【答案】【考点】因式分解﹣运用公式法【解析】【解答】解:根据完全平方公式可得故答案为:【分析】考查用公式法分解因式;完全平方公式:12.【答案】【考点】几何概率【解析】【解答】解:一共有9个小方格,阴影部分的小方格有4个,则P=故答案为:【分析】根据概率公式P=,找出所有结果数n,符合事件的结果数m,代入求值即可。13.【答案】85°【考点】平行线的性质【解析】【解答】如图,作直线c//a,则a//b//c,∴∠3=∠1=40°,∴∠5=∠4=90°-∠3=90°-40°=50°,∴∠2=180°-∠5-45°=85°故答案为:85°【分析】过三角形的顶点作直线c//a,根据平行线的性质即可打开思路。14.【答案】4【考点】反比例函数系数k的几何意义【解析】【解答】解:∵点D在反比例函数的图象上,∴设点D(a,),∵点D是AB的中点,∴B(2a,),∵点E与B的纵坐标相同,且点E在反比例函数的图象上,∴点E(2a,)则BD=a,BE=,∴,则k=4故答案为:4【分析】由的面积为1,构造方程的思路,可设点D(a,),在后面的计算过程中a将被消掉;所以在解反比例函数中的k时设另外的未知数时依然能解出k的值。15.【答案】【考点】弧长的计算【解析】【解答】解:由第一张图可知弧OA与弧OB的长度和与弧AB的长度相等,则周长为cm故答案为:【分析】仔细观察第一张图,可发现单个图的左右两条小弧的长度之和是弧AB的度,则根据弧长公式即可求得。16.【答案】或【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△BPQ是直角三角形时,有两种情况:∠BPQ=90度,∠BQP=90度。在直角中,,,,则AB=10,AC:BC:AB=3:4:5.(1)当∠BPQ=90度,则△BPQ~△BCA,则PQ:BP:BQ=AC:BC:AB=3:4:5,设PQ=3x,则BP=4x,BQ=5x,AQ=AB-BQ=10-5x,此时∠AQP为钝角,则当△APQ是等腰三角形时,只有AQ=PQ,则10-5x=3x,解得x=,则AQ=10-5x=;(2)当∠BQP=90度,则△BQP~△BCA,则PQ:BQ:BP=AC:BC:AB=3:4:5,设PQ=3x,则BQ=4x,BP=5x,AQ=AB-BQ=10-4x,此时∠AQP为直角,则当△APQ是等腰三角形时,只有AQ=PQ,则10-4x=3x,解得x=,则AQ=10-4x=;故答案为:或【分析】要同时使是等腰三角形且是直角三角形,要先找突破口,可先确定当△APQ是等腰三角形时,再