1点线面角一.选择题1.(2018湖南省邵阳市)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20°B.60°C.70°D.160°【分析】根据对顶角相等解答即可.【解答】解:∵∠AOD=160°,∴∠BOC=∠AOD=160°,故选:D.【点评】此题考查对顶角、邻补角,关键是根据对顶角相等解答.二.填空题1.(2018•江苏淮安•3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A.B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是.【分析】连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;【解答】解:连接AD.2∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=,∴CD=BC﹣DB=5﹣=,故答案为.【点评】本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.2.(2018•乌鲁木齐•4分)一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外完全相同,从口袋中随机摸一个球,则摸到红球的概率是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵袋子中共有5+2+1=8个球,其中红球有5个,∴摸到红球的概率是,故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.(2018•贵州黔西南州•3分)∠α=35°,则∠α的补角为145度.【分析】根据两个角的和等于180°,则这两个角互补计算即可.【解答】解:180°﹣35°=145°,则∠α的补角为145°,故答案为:145.【点评】本题考查的是余角和补角,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.(2018•乌鲁木齐•4分)一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这3些球除颜色外完全相同,从口袋中随机摸一个球,则摸到红球的概率是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵袋子中共有5+2+1=8个球,其中红球有5个,∴摸到红球的概率是,故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.