1相交线与平行线一.选择题1.(2018·广西贺州·3分)如图,下列各组角中,互为对顶角的是()【解答】解:互为对顶角的是:∠1和∠2.故选:A.2.(2018·湖北江汉·3分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.3.(2018·湖北荆州·3分)如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A.B分别在l1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°【解答】解:∵l1∥l2,∴∠1+∠CAB=∠2,2∵Rt△ACB中,∠C=90°,AC=BC,∴∠CAB=45°,∴∠2=20°+45°=65°,故选:C.4.(2018·湖北十堰·3分)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()A.62°B.108°C.118°D.152°【分析】依据AB∥CD,即可得出∠2=∠ABC=∠1+∠CBE.【解答】解:如图,∵AB∥CD,∴∠2=∠ABC=∠1+∠CBE=28°+90°=118°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.(2018·四川省攀枝花·3分)如图,等腰直角三角形的顶点A.C分别在直线A.b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°.∵a∥b,∴∠ACD=180°﹣120°=60°,∴∠2=∠ACD﹣∠ACB=60°﹣45°=15°;故选B.36.(2018•莱芜•3分)如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°【分析】过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以及角平分线的定义可得“∠FBE+∠EDF=(∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出结论.【解答】解:如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=(∠ABE+∠CDE)=149.5°,∵四边形的BFDE的内角和为360°,∴∠BFD=360°﹣149.5°﹣61°=149.5°.故选:B.【点评】本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.7.(2018•陕西•3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有4A.1个B.2个C.3个D.4个【答案】D【解析】【分析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠1互补的角的个数.【详解】如图,∵l1∥l2,l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2.∠3.∠4.∠5共4个,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.(2018·湖北咸宁·3分)如图,已知a∥b,l与A.b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°【答案】B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,5∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.9.(2018·辽宁大连·3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°解:如图,∵△ABC是等腰直角三角形,∴∠1=45°.∵l∥l',∴∠α=∠1=45°.故选A.二.填空题1.(2018·辽宁省沈阳市)(2.00分)如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()6A.60°B.100°C.110°D.120°【分析】根据平行线的性质比较多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,故选:D.【点评】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.(2018·辽宁省葫芦岛市)如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°【解答】解:∵∠CDE=165°,∴∠ADE=15°.∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°.故选D.3.(2018·辽宁省阜新市)如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为52°.【解答】解:∵AB∥CD,∠EGF=64°,∴∠BEG=∠EGF=64°.又∵EG平分∠BEF,∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°.7故答案为:52°.4.(2018•广安•3分)一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=120度.【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【解答】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.【点评】此题考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.三.解答题1.(2018·重庆市B卷)(8.00分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.【解答】解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,8∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【点评】考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.