1跨学科结合与高中衔接问题一、选择题1.(2018•山东菏泽•3分)规定:在平面直角坐标系中,如果点P的坐标为(m,n),向量可以用点P的坐标表示为:=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么点与互相垂直.下列四组向量,互相垂直的是()A.=(3,2),=(﹣2,3)B.=(﹣1,1),=(+1,1)C.=(3,20180),=(﹣,﹣1)D.=(,﹣),=(()2,4)【考点】LM:*平面向量;24:立方根;6E:零指数幂.【分析】根据垂直的向量满足的条件判断即可;【解答】解:A、∵3×(﹣2)+2×3=0,∴与垂直,故本选项符合题意;B、∵(﹣1)(+1)+1×1=2≠0,∴与不垂直,故本选项不符合题意;C、∵3×(﹣)+1×(﹣1)=﹣2≠,∴与不垂直,故本选项不符合题意;D、∵×()2+(﹣)×4=2≠0,∴与不垂直,故本选项不符合题意,故选:A.【点评】本题考查平面向量、平面向量垂直的条件,解题的关键是理解题意,属于中考常考题型.2.(2018年湖北省宜昌市3分)如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p1【分析】直接利用反比例函数的性质进而分析得出答案.【解答】解:∵p=,F>0,∴p随S的增大而减小,∵A,B,C三个面的面积比是4:2:1,∴p1,p2,p3的大小关系是:p3>p2>p1.故选:D.【点评】此题主要考查了反比例函数的性质,正确把握反比例函数的性质是解题关键.23.(2018·浙江临安·3分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5【考点】列方程解应用题【分析】由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程即可得出答案.【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.【点评】此题的关键是找到球,正方体,圆柱体的关系.4.题号依次顺延二.填空题(要求同上一.)1.(2018·重庆(A)·4分)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮。其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮。甲、乙两种袋装粗粮每袋成本价分别为袋中,,ABC三种粗粮的成本价之和。已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%。若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是。(-=100%商品的售价商品的成本价商品的利润率商品的成本价)【考点】不定方程的应用、销售问题.【解析】用表格列出甲、乙两种粗粮的成分:品种类别甲乙3A31B12C12甲中A总成本价为36=18元,根据甲的售价、利润率列出等式58.5-0.3甲总成本价甲总成本价,可知甲总成本为45元。甲中B与C总成本为45-1827元。乙中B与C总成本为27254元。乙总成本为541660元。设甲销售a袋,乙销售b袋使总利润率为24%.(72-60)(58.545)100%24%4560baab。13.51210.814.42.72.4:8:9abababab【点评】本题考查了不定方程的应用,其中包括销售问题,难度较高。2.(2018•湖南省永州市•4分)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=4.【分析】利用log2(x•y)=log2x+log2y得到log216=log22+log22+log22+log22,然后根据log22=1进行计算.【解答】解:log216=log2(2•2•2•2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.【点评】本题考查了规律型:认真观察、仔细思考,善用联想是解决这类问题的方法.三.解答题(要求同上一)1.(2018•四川凉州•4分)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【分析】利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定4义进行计算.【解答】解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.【点评】本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.2.(2018•北京•7分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(2,6),B(2,2),C(6,2).(1)求d(点O,ABC△);(2)记函数ykx(11x≤≤,0k)的图象为图形G,若d(G,ABC△)1,直接写出k的取值范围;(3)T的圆心为T(,0),半径为1.若d(T,ABC△)1,直接写出的取值范围.【解析】(1)如下图所示:yxODCBA∵B(2,2),C(6,2)∴D(0,2)∴d(O,ABC△)2OD(2)10k≤或01k≤511yxODCBAABCDOxy112(3)4t或0422t≤≤或422t.ABCDOxy【考点】点到直线的距离,圆的切线3.(2018·四川自贡·10分)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:loga(M•N)=logaM+logaN(a>0,a≠1,M>0,6N>0);理由如下:设logaM=m,logaN=n,则M=am,N=an∴M•N=am•an=am+n,由对数的定义得m+n=loga(M•N)又∵m+n=logaM+logaN∴loga(M•N)=logaM+logaN解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;(3)根据公式:loga(M•N)=logaM+logaN和loga=logaM﹣logaN的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.【解答】解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设logaM=m,logaN=n,则M=am,N=an,∴==am﹣n,由对数的定义得m﹣n=loga,又∵m﹣n=logaM﹣logaN,∴loga=logaM﹣logaN(a>0,a≠1,M>0,N>0);(3)log32+log36﹣log34,=log3(2×6÷4),=log33,=1,故答案为:1.【点评】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.