广东省深圳市2018年中考数学真题试题(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1广东省深圳市2018年中考数学真题试题一、选择题1.(2分)6的相反数是()A.B.C.D.6【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:∵6的相反数为-6,故答案为:A.【分析】相反数:数值相同,符号相反的两个数,由此即可得出答案.2.(2分)260000000用科学计数法表示为()A.B.C.D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:∵260000000=2.6×108.故答案为:B.【分析】科学计数法:将一个数字表示成a×10的n次幂的形式,其中1≤|a|10,n为整数,由此即可得出答案.3.(2分)图中立体图形的主视图是()A.B.C.D.2【答案】B【考点】简单几何体的三视图【解析】【解答】解:∵从物体正面看,最底层是三个小正方形,第二层从右往左有两个小正方形,故答案为:B.【分析】视图:从物体正面观察所得到的图形,由此即可得出答案.4.(2分)观察下列图形,是中心对称图形的是()A.B.C.D.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A.等边三角形为轴对称图形,有三条对称轴,但不是中心对称图形,A不符合题意;B.五角星为轴对称图形,有五条对称轴,但不是中心对称图形,B不符合题意;C.爱心为轴对称图形,有一条对称轴,但不是中心对称图形,C不符合题意;D.平行四边形为中心对称图形,对角线的交点为对称中心,D符合题意;故答案为:D.【分析】中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,由此即可得出答案。5.(2分)下列数据:,则这组数据的众数和极差是()A.B.C.D.【答案】A【考点】极差、标准差,众数【解析】【解答】解:∵85出现了三次,∴众数为:85,又∵最大数为:85,最小数为:75,∴极差为:85-75=10.故答案为:A.【分析】众数:一组数据中出现次数最多数;极差:一组数据中最大数与最小数的差;由此即可得出答案.6.(2分)下列运算正确的是()A.B.C.D.【答案】B3【考点】同底数幂的乘法,同底数幂的除法,同类二次根式,同类项【解析】【解答】解:A.∵a.a=a,故错误,A不符合题意;B.∵3a-a=2a,故正确,B符合题意;C.∵a8÷a4=a4,故错误,C不符合题意;D.与不是同类二次根式,故不能合并,D不符合题意;故答案为:B.【分析】A.根据同底数幂相乘,底数不变,指数相加即可判断对错;B.根据同类项定义:所含字母相同,并且相同字母指数相同,由此得不是同类项;C.根据同底数幂相除,底数不变,指数相减即可判断对错;D.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式,由此即可判断对错.7.(2分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.B.C.D.【答案】D【考点】一次函数图象与几何变换【解析】【解答】解:∵函数y=x向上平移3个单位,∴y=x+3,∴当x=2时,y=5,即(2,5)在平移后的直线上,故答案为:D.【分析】根据平移的性质得平移后的函数解析式,再将点的横坐标代入得出y值,一一判断即可得出答案.8.(2分)如图,直线被所截,且,则下列结论中正确的是()A.B.C.D.【答案】B【考点】平行线的性质【解析】【解答】解:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.9.(2分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是()A.B.4C.D.【答案】A【考点】二元一次方程组的其他应用【解析】【解答】解:依题可得:故答案为:A.【分析】根据一共70个房间得x+y=70;大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满得8x+6y=480,从而得一个二元一次方程组.10.(2分)如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是()A.3B.C.D.【答案】D【考点】切线的性质,锐角三角函数的定义,切线长定理【解析】【解答】解:设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),∵∠DAC=60°,∴∠BAC=120°.又∵AB、AC为圆O的切线,∴AC=AB,∠BAO=∠CAO=60°,在Rt△AOB中,∵AB=3,∴tan∠BAO=,5∴OB=AB×tan∠60°=3,∴光盘的直径为6.故答案为:D.【分析】设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),根据邻补角定义得∠BAC=120°,又由切线长定理AC=AB,∠BAO=∠CAO=60°;在Rt△AOB中,根据正切定义得tan∠BAO=,代入数值即可得半径OB长,由直径是半径的2倍即可得出答案.11.(2分)二次函数的图像如图所示,下列结论正确是()A.B.C.D.有两个不相等的实数根【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:A.∵抛物线开口向下,∴a0,∵抛物线与y轴的正半轴相交,∴c0,∵对称轴-在y轴右侧,∴b0,∴abc0,故错误,A不符合题意;B.∵对称轴-=1,即b=-2a,∴2a+b=0,故错误,B不符合题意;C.∵当x=-1时,y0,即a-b+c0,又∵b=-2a,∴3a+c0,故正确,C符合题意;D.∵ax2+bx+c-3=0,∴ax2+bx+c=3,即y=3,∴x=1,6∴此方程只有一个根,故错误,D不符合题意;故答案为:C.【分析】A.根据抛物线开口向下得a0;与y轴的正半轴相交得c0;对称轴在y轴右侧得b0,从而可知A错误;B.由图像可知对称轴为2,即b=-2a,从而得出B错误;C.由图像可知当x=-1时,a-b+c0,将b=-2a代入即可知C正确;D.由图像可知当y=3时,x=1,故此方程只有一个根,从而得出D错误.12.(2分)如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是()①;②;③若,则平分;④若,则A.①③B.②③C.②④D.③④【答案】B【考点】反比例函数系数k的几何意义,三角形的面积,角的平分线判定【解析】【解答】解:设P(a,b),则A(,b),B(a,),①∴AP=-a,BP=-b,∵a≠b,∴AP≠BP,OA≠OB,∴△AOP和△BOP不一定全等,故①错误;②∵S△AOP=·AP·yA=·(-a)·b=6-ab,S△BOP=·BP·xB=·(-b)·a=6-ab,∴S△AOP=S△BOP.故②正确;③作PD⊥OB,PE⊥OA,7∵OA=OB,S△AOP=S△BOP.∴PD=PE,∴OP平分∠AOB,故③正确;④∵S△BOP=6-ab=4,∴ab=4,∴S△ABP=·BP·AP=·(-b)·(-a),=-12++ab,=-12+18+2,=8.故④错误;故答案为:B.【分析】设P(a,b),则A(,b),B(a,),①根据两点间距离公式得AP=-a,BP=-b,因为不知道a和b是否相等,所以不能判断AP与BP,OA与OB,是否相等,所以△AOP和△BOP不一定全等,故①错误;②根据三角形的面积公式可得S△AOP=S△BOP=6-ab,故②正确;③作PD⊥OB,PE⊥OA,根据S△AOP=S△BOP.底相等,从而得高相等,即PD=PE,再由角分线的判定定理可得OP平分∠AOB,故③正确;④根据S△BOP=6-ab=4,求得ab=4,再由三角形面积公式得S△ABP=·BP·AP,代入计算即可得④错误;二、填空题813.(1分)分解因式:________.【答案】【考点】因式分解﹣运用公式法【解析】【解答】a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).【分析】观察此多项式的特点,没有公因式,符合平方差公式的特点,即可求解。14.(1分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率________.【答案】【考点】概率公式【解析】【解答】解:∵一个正六面体的骰子六个面上的数字分别为1,2,3,4,5,6,∴投掷一次得到正面向上的数字为奇数的有1,3,5共三次,∴投掷一次得到正面向上的数字为奇数的概率P=.故答案为:.【分析】根据投掷一次正方体骰子一共有6种情况,正面向上的数字为奇数的情况有3种,根据概率公式即可得出答案.15.(1分)如图,四边形ACFD是正方形,∠CEA和∠ABF都是直角且点E、A、B三点共线,AB=4,则阴影部分的面积是________.【答案】8【考点】全等三角形的判定与性质,正方形的性质【解析】【解答】解:∵四边形ACFD是正方形,∴∠CAF=90°,AC=AF,∴∠CAE+∠FAB=90°,又∵∠CEA和∠ABF都是直角,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,在△ACE和△FAB中,∵,∴△ACE≌△FAB(AAS),∵AB=4,∴CE=AB=4,9∴S阴影=S△ABC=·AB·CE=×4×4=8.故答案为:8.【分析】根据正方形的性质得∠CAF=90°,AC=AF,再根据三角形内角和和同角的余角相等得∠ACE=∠FAB,由全等三角形的判定AAS得△ACE≌△FAB,由全等三角形的性质得CE=AB=4,根据三角形的面积公式即可得阴影部分的面积.16.(1分)在Rt△ABC中∠C=90°,AD平分∠CAB,BE平分∠CBA,AD、BE相交于点F,且AF=4,EF=,则AC=________.【答案】【考点】勾股定理,相似三角形的判定与性质【解析】【解答】解:作EG⊥AF,连接CF,∵∠C=90°,∴∠CAB+∠CBA=90°,又∵AD平分∠CAB,BE平分∠CBA,∴∠FAB+∠FBA=45°,∴∠AFE=45°,在Rt△EGF中,∵EF=,∠AFE=45°,∴EG=FG=1,又∵AF=4,∴AG=3,∴AE=,∵AD平分∠CAB,BE平分∠CBA,∴CF平分∠ACB,∴∠ACF=45°,∵∠AFE=∠ACF=45°,∠FAE=∠CAF,∴△AEF∽△AFC,10∴,即,∴AC=.故答案为:.【分析】作EG⊥AF,连接CF,根据三角形内角和和角平分线定义得∠FAB+∠FBA=45°,再由三角形外角性质得∠AFE=45°,在Rt△EGF中,根据勾股定理得EG=FG=1,结合已知条件得AG=3,在Rt△AEG中,根据勾股定理得AE=;由已知得F是三角形角平分线的交点,所以CF平分∠ACB,∠ACF=45°,根据相似三角形的判定和性质得,从而求出AC的长.三、解答题17.(5分)计算:.【答案】解:原式=2-2×++1,=2-++1,=3.【考点】实数的运算【解析】【分析】根据负整数指数幂,特殊角的三角函数值,绝对值的性质,零指数幂一一计算即可得出答案.18.(5分)先化简,再求值:,其中.【答案】解:原式∵x=2,∴=.【考点】利用分式运算化简求值【解析】【分析】根据分式的减法法则,除法法则计算化简,再将x=2的值代入化简后的分式即可得出答案.19.(13分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25艺术0.15其它200.211请根据上图完成下面题目:(1)总人数为________人,________,________.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【答案】(1)100;0.25;15(2)解:由(1)中求得的b值,补全条形统计图如下:(3)解:∵喜欢艺术类的频率为0.15,∴全校喜欢艺术类学生的人数为:600×0.15=90(人).答:全校喜欢艺术类学生的人数为90人.【考点】用样本估计总体,统计表,条形统计图【解析】【解答】解:(1)由统计表可知体育频数为40,频率为0.4,∴总人数为:0.4÷40=100(人),∴a=25÷100=0.25,b=100×0.15=15(人),故答案为:100,0.

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功