2021年全国新高考Ⅰ卷数学试题(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2021年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合24Axx,2,3,4,5B,则AB()A.2B.2,3C.3,4D.2,3,4【答案】B【解析】【分析】利用交集的定义可求AB.【详解】由题设有2,3AB,故选:B.2.已知2iz,则izz()A.62iB.42iC.62iD.42i【答案】C【解析】【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2zi,故2zi,故22262zziiii故选:C.3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22C.4D.42【答案】B【解析】【分析】设圆锥的母线长为l,根据圆锥底面圆的周长等于扇形的弧长可求得l的值,即为所求.【详解】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则22l,解得22l.故选:B.4.下列区间中,函数7sin6fxx单调递增的区间是()A.0,2B.,2ππC.3,2D.3,22【答案】A【解析】【分析】解不等式22262kxkkZ,利用赋值法可得出结论.【详解】因为函数sinyx的单调递增区间为22,22kkkZ,对于函数7sin6fxx,由22262kxkkZ,解得22233kxkkZ,取0k,可得函数fx的一个单调递增区间为2,33,则20,,233,2,,233,A选项满足条件,B不满足条件;取1k,可得函数fx的一个单调递增区间为58,33,32,,233且358,,233,358,2,233,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成sinyAωxφ形式,再求sinyAωxφ的单调区间,只需把x看作一个整体代入sinyx的相应单调区间内即可,注意要先把化为正数.5.已知1F,2F是椭圆C:22194xy的两个焦点,点M在C上,则12MFMF的最大值为()A.13B.12C.9D.6【答案】C【解析】【分析】本题通过利用椭圆定义得到1226MFMFa,借助基本不等式212122MFMFMFMF即可得到答案.【详解】由题,229,4ab,则1226MFMFa,所以2121292MFMFMFMF(当且仅当123MFMF时,等号成立).故选:C.【点睛】本题关键在于正确理解能够想到求最值的方法,即通过基本不等式放缩得到.6.若tan2,则sin1sin2sincos()A.65B.25C.25D.65【答案】C【解析】【分析】将式子进行齐次化处理,代入tan2即可得到结果.【详解】将式子进行齐次化处理得:22sinsincos2sincossin1sin2sinsincossincossincos2222sinsincostantan422sincos1tan145.故选:C.【点睛】易错点睛:本题如果利用tan2,求出sin,cos的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.7.若过点,ab可以作曲线exy的两条切线,则()A.ebaB.eabC.0ebaD.0eab【答案】D【解析】【分析】根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果【详解】在曲线xye上任取一点,tPte,对函数xye求导得exy,所以,曲线xye在点P处的切线方程为ttyeext,即1ttyexte,由题意可知,点,ab在直线1ttyexte上,可得11tttbaeteate,令1tftate,则tftate.当ta时,0ft,此时函数ft单调递增,当ta时,0ft,此时函数ft单调递减,所以,maxaftfae,由题意可知,直线yb与曲线yft的图象有两个交点,则maxabfte,当1ta时,0ft,当1ta时,0ft,作出函数ft的图象如下图所示:由图可知,当0abe时,直线yb与曲线yft的图象有两个交点.故选:D.【点睛】数形结合是解决数学问题常用且有效的方法8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立【答案】B【解析】【分析】根据独立事件概率关系逐一判断【详解】11561()()()()6636366PPPP甲,乙,丙,丁,,1()0()()()()()36PPPPPP甲丙甲丙,甲丁甲丁,1()()()()0()()36PPPPPP乙丙乙丙,丙丁丁丙,故选:B【点睛】判断事件,AB是否独立,先计算对应概率,再判断()()()PAPBPAB是否成立二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据1x,2x,…,nx,由这组数据得到新样本数据1y,2y,…,ny,其中iiyxc(1,2,,),inc为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同【答案】CD【解析】【分析】A、C利用两组数据的线性关系有()()EyExc、()()DyDx,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D的正误.【详解】A:()()()EyExcExc且0c,故平均数不相同,错误;B:若第一组中位数为ix,则第二组的中位数为iiyxc,显然不相同,错误;C:()()()()DyDxDcDx,故方差相同,正确;D:由极差的定义知:若第一组的极差为maxminxx,则第二组的极差为maxminmaxminmaxmin()()yyxcxcxx,故极差相同,正确;故选:CD10.已知O为坐标原点,点1cos,sinP,2cos,sinP,3cos,sinP,()1,0A,则()A.12OPOPB.12APAPC.312OAOPOPOPD.123OAOPOPOP【答案】AC【解析】【分析】A、B写出1OP,2OP、1APuuur,2APuuur的坐标,利用坐标公式求模,即可判断正误;C、D根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A:1(cos,sin)OP,2(cos,sin)OP,所以221||cossin1OP,222||(cos)(sin)1OP,故12||||OPOP,正确;B:1(cos1,sin)AP,2(cos1,sin)AP,所以222221||(cos1)sincos2cos1sin2(1cos)4sin2|sin|22AP,同理222||(cos1)sin2|sin|2AP,故12||,||APAP不一定相等,错误;C:由题意得:31cos()0sin()cos()OAOP,12coscossin(sin)cos()OPOP,正确;D:由题意得:11cos0sincosOAOP,23coscos()(sin)sin()OPOP22coscossinsincossinsincoscossincoscos2sinsin2cos(2),错误;故选:AC11.已知点P在圆225516xy上,点4,0A、0,2B,则()A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当PBA最小时,32PBD.当PBA最大时,32PB【答案】ACD【解析】【分析】计算出圆心到直线AB的距离,可得出点P到直线AB的距离的取值范围,可判断AB选项的正误;分析可知,当PBA最大或最小时,PB与圆M相切,利用勾股定理可判断CD选项的正误.【详解】圆225516xy的圆心为5,5M,半径为4,直线AB的方程为142xy,即240xy,圆心M到直线AB的距离为2252541111545512,所以,点P到直线AB的距离的最小值为115425,最大值为1154105,A选项正确,B选项错误;如下图所示:当PBA最大或最小时,PB与圆M相切,连接MP、BM,可知PMPB,22052534BM,4MP,由勾股定理可得2232BPBMMP,CD选项正确.故选:ACD.【点睛】结论点睛:若直线l与半径为r的圆C相离,圆心C到直线l的距离为d,则圆C上一点P到直线l的距离的取值范围是,drdr.12.在正三棱柱111ABCABC中,11ABAA,点P满足1BPBCBB,其中0,1,0,1,则()A.当1时,1ABP△的周长为定值B.当1时,三棱锥1PABC的体积为定值C.当12时,有且仅有一个点P,使得1APBPD.当12时,有且仅有一个点P,使得1AB平面1ABP【答案】BD【解析】【分析】对于A,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B,将P点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C,考虑借助向量的平移将P点轨迹确定,进而考虑建立合适的直角坐标系来求解P点的个数;对于D,考虑借助向量的平移将P点轨迹确定,进而考虑建立合适的直角坐标系来求解P点的个数.【详解】易知,点P在矩形11BCCB内部(含边界).对于A,当1时,11=BPBCBBBCCC,即此时P线段1CC,1ABP

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功