精品解析:2022年全国高考乙卷数学(文)试题(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学科网(北京)股份有限公司2022年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框,回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合2,4,6,8,10,16MNxx,则MN()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为2,4,6,8,10M,|16Nxx,所以2,4MN.故选:A.2.设(12i)2iab,其中,ab为实数,则()A.1,1abB.1,1abC.1,1abD.1,1ab【答案】A【解析】【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【详解】因为,abÎR,2i2iaba,所以0,22aba,解得:1,1ab.故选:A.3.已知向量(2,1)(2,4)ab,,则abrr()A.2B.3C.4D.5【答案】D【解析】学科网(北京)股份有限公司【分析】先求得ab,然后求得abrr.【详解】因为2,12,44,3ab,所以22435ab.故选:D4.分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A选项,甲同学周课外体育运动时长的样本中位数为7.37.57.42,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.37.47.68.18.28.28.58.68.68.68.69.09.29.39.810.18.50625816,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值60.3750.416,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值130.81250.616,D选项结论正确.故选:C学科网(北京)股份有限公司5.若x,y满足约束条件2,24,0,xyxyy…„…则2zxy的最大值是()A.2B.4C.8D.12【答案】C【解析】【分析】作出可行域,数形结合即可得解.【详解】由题意作出可行域,如图阴影部分所示,转化目标函数2zxy为2yxz,上下平移直线2yxz,可得当直线过点4,0时,直线截距最小,z最大,所以max2408z.故选:C.6.设F为抛物线2:4Cyx的焦点,点A在C上,点(3,0)B,若AFBF,则AB()A.2B.22C.3D.32【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A的横坐标,进而求得点A坐标,即可得到答案.【详解】由题意得,1,0F,则2AFBF,即点A到准线1x的距离为2,所以点A的横坐标为121,学科网(北京)股份有限公司不妨设点A在x轴上方,代入得,1,2A,所以22310222AB.故选:B7.执行下边的程序框图,输出的n()A.3B.4C.5D.6【答案】B【解析】【分析】根据框图循环计算即可.【详解】执行第一次循环,2123bba,312,12abann,222231220.0124ba;执行第二次循环,2347bba,725,13abann,222271220.01525ba;执行第三次循环,271017bba,17512,14abann,学科网(北京)股份有限公司2222171220.0112144ba,此时输出4n.故选:B8.如图是下列四个函数中的某个函数在区间[3,3]的大致图像,则该函数是()A.3231xxyxB.321xxyxC.22cos1xxyxD.22sin1xyx【答案】A【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设321xxfxx,则10f,故排除B;设22cos1xxhxx,当π0,2x时,0cos1x,所以222cos2111xxxhxxx,故排除C;设22sin1xgxx,则2sin33010g,故排除D.故选:A.9.在正方体1111ABCDABCD中,E,F分别为,ABBC的中点,则()A.平面1BEF平面1BDDB.平面1BEF平面1ABDC.平面1//BEF平面1AACD.平面1//BEF平面11ACD【答案】A【解析】【分析】证明EF平面1BDD,即可判断A;如图,以点D为原点,建立空间直角坐标系,学科网(北京)股份有限公司设2AB,分别求出平面1BEF,1ABD,11ACD的法向量,根据法向量的位置关系,即可判断BCD.【详解】解:在正方体1111ABCDABCD中,ACBD且1DD平面ABCD,又EF平面ABCD,所以1EFDD,因为,EF分别为,ABBC的中点,所以EFAC,所以EFBD,又1BDDDD,所以EF平面1BDD,又EF平面1BEF,所以平面1BEF平面1BDD,故A正确;如图,以点D为原点,建立空间直角坐标系,设2AB,则112,2,2,2,1,0,1,2,0,2,2,0,2,0,2,2,0,0,0,2,0BEFBAAC,10,2,2C,则11,1,0,0,1,2EFEB,12,2,0,2,0,2DBDA,1110,0,2,2,2,0,2,2,0,AAACAC设平面1BEF的法向量为111,,mxyz,则有11111020mEFxymEByz,可取2,2,1m,同理可得平面1ABD的法向量为11,1,1n,平面1AAC的法向量为21,1,0n,平面11ACD的法向量为31,1,1n,则122110mn,所以平面1BEF与平面1ABD不垂直,故B错误;因为m与2nuur不平行,所以平面1BEF与平面1AAC不平行,故C错误;因为m与3n不平行,学科网(北京)股份有限公司所以平面1BEF与平面11ACD不平行,故D错误,故选:A.10.已知等比数列na的前3项和为168,2542aa,则6a()A.14B.12C.6D.3【答案】D【解析】【分析】设等比数列na的公比为,0qq,易得1q,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列na的公比为,0qq,若1q,则250aa,与题意矛盾,所以1q,则31123425111168142aqaaaqaaaqaq,解得19612aq,所以5613aaq.故选:D.11.函数cos1sin1fxxxx在区间0,2π的最小值、最大值分别为()A.ππ22,B.3ππ22,C.ππ222,D.3ππ222,学科网(北京)股份有限公司【答案】D【解析】【分析】利用导数求得fx的单调区间,从而判断出fx在区间0,2π上的最小值和最大值.【详解】sinsin1cos1cosfxxxxxxx,所以fx在区间π0,2和3π,2π2上0fx,即fx单调递增;在区间π3π,22上0fx,即fx单调递减,又02π2ff,ππ222f,3π3π3π11222f,所以fx在区间0,2π上的最小值为3π2,最大值为π22.故选:D12.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.33D.22【答案】C【解析】【分析】先证明当四棱锥顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为22r,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为,则2111sin222222ABCDSACBDACBDrrr(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为22r又22rh1则3222222212224322333327OABCDrrhVrhrrh的学科网(北京)股份有限公司当且仅当222rh即33h时等号成立,故选:C二、填空题:本题共4小题,每小题5分,共20分.13.记nS为等差数列na的前n项和.若32236SS,则公差d_______.【答案】2【解析】【分析】转化条件为112+226adad,即可得解.【详解】由32236SS可得123122+36aaaaa,化简得31226aaa,即112+226adad,解得2d.故答案为:2.14.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为35C10甲、乙都入选的方法数为13C3,所以甲、乙都入选的概率310P故答案为:31015.过四点(0,0),(4,0),(1,1),(4,2)中的三点的一个圆的方程为____________.【答案】222313xy或22215xy或224765339xy或2281691525xy;【解析】【分析】设圆的方程为220xyDxEyF,根据所选点的坐标,得到方程组,解得即可;【详解】解:依题意设圆的方程为220xyDxEyF,学科网(北京)股份有限公司若过0,0,4,0,1,1,则01640110FDFDEF,解得046FDE,所以圆的方程为22460xyxy,即222313xy;若过0,0,4,0,4,2,则01640164420FDFDEF,解得042FDE,所以圆的方程为22420xyxy,即22215xy;若过0,0,4,2,1,1,则0110164420FDEFDEF,解得083143FDE,所以圆的方程为22814033xyxy,即224765339xy;若过1,1,4,

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功