精品解析:2022年全国新高考I卷数学试题(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学科网(北京)股份有限公司绝密☆启用前试卷类型:A2022年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{4},{31}MxxNxx∣∣,则MN()A.02xxB.123xxC.316xxD.1163xx【答案】D【解析】【分析】求出集合,MN后可求MN.详解】1{16},{}3MxxNxx∣0∣,故1163MNxx,故选:D2.若i(1)1z,则zz()A.2B.1C.1D.2【答案】D【解析】【分析】利用复数的除法可求z,从而可求zz.【详解】由题设有21i1iiiz,故1+iz,故1i1i2zz,【学科网(北京)股份有限公司故选:D3.在ABC中,点D在边AB上,2BDDA.记CAmCDn,,则CB()A.32mnB.23mnC.32mnD.23mn【答案】B【解析】【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D在边AB上,2BDDA,所以2BDDA,即2CDCBCACD,所以CB3232CDCAnm23mn.故选:B.4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m.时,相应水面的面积为21400km.;水位为海拔1575m.时,相应水面的面积为21800km.,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m.上升到1575m.时,增加的水量约为(72.65)()A.931.010mB.931.210mC.931.410mD.931.610m【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为157.5148.59MN(m),所以增加的水量即为棱台的体积V.棱台上底面积262140.014010Skmm,下底面积262180.018010Skmm,∴661211914010180101401801033VhSSSS6799333206071096182.65101.437101.410(m).学科网(北京)股份有限公司故选:C.5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有27C21种不同的取法,若两数不互质,不同的取法有:2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种,故所求概率2172213P.故选:D.6.记函数()sin(0)4fxxb的最小正周期为T.若23T,且()yfx的图象关于点3,22中心对称,则2f()A.1B.32C.52D.3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T满足23T,得223,解得23,又因为函数图象关于点3,22对称,所以3,24kkZ,且2b,所以12,63kkZ,所以52,5()sin224fxx,所以5sin21244f.故选:A7.设0.110.1e,ln0.99abc,,则()A.abcB.cbaC.cabD.acb学科网(北京)股份有限公司【答案】C【解析】【分析】构造函数()ln(1)fxxx,导数判断其单调性,由此确定,,abc大小.【详解】设()ln(1)(1)fxxxx,因为1()111xfxxx,当(1,0)x时,()0fx,当,()0x时()0fx,所以函数()ln(1)fxxx在(0,)单调递减,在(1,0)上单调递增,所以1()(0)09ff,所以101ln099,故110lnln0.999,即bc,所以1()(0)010ff,所以91ln+01010,故1109e10,所以11011e109,故ab,设()eln(1)(01)xgxxxx,则21e11()+1e11xxxgxxxx,令2()e(1)+1xhxx,2()e(21)xhxxx,当021x时,()0hx,函数2()e(1)+1xhxx单调递减,当211x时,()0hx,函数2()e(1)+1xhxx单调递增,又(0)0h,所以当021x时,()0hx,所以当021x时,()0gx,函数()eln(1)xgxxx单调递增,所以(0.1)(0)0gg,即0.10.1eln0.9,所以ac故选:C.8.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36,且333l,则该正四棱锥体积的取值范围是()A.8118,4B.2781,44C.2764,43D.[18,27]【答案】C【解析】【分析】设正四棱锥的高为h,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为36,所以球的半径3R,的学科网(北京)股份有限公司设正四棱锥的底面边长为2a,高为h,则2222lah,22232(3)ah,所以26hl,2222alh所以正四棱锥的体积42622411214()=333366936lllVShahll,所以5233112449696llVll,当326l时,0V,当2633l时,0V,所以当26l时,正四棱锥的体积V取最大值,最大值为643,又3l时,274V,33l时,814V,所以正四棱锥的体积V的最小值为274,所以该正四棱锥体积的取值范围是276443,.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知正方体1111ABCDABCD,则()A.直线1BC与1DA所成的角为90B.直线1BC与1CA所成的角为90C.直线1BC与平面11BBDD所成的角为45D.直线1BC与平面ABCD所成的角为45【答案】ABD【解析】【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接1BC、1BC,因为11//DABC,所以直线1BC与1BC所成的角即为直线1BC与1DA所成的角,因为四边形11BBCC为正方形,则1BC1BC,故直线1BC与1DA所成的角为90,A正确;学科网(北京)股份有限公司连接1AC,因为11AB平面11BBCC,1BC平面11BBCC,则111ABBC,因为1BC1BC,1111ABBCB,所以1BC平面11ABC,又1AC平面11ABC,所以11BCCA,故B正确;连接11AC,设1111ACBDO,连接BO,因为1BB平面1111DCBA,1CO平面1111DCBA,则11COBB,因为111COBD,1111BDBBB,所以1CO平面11BBDD,所以1CBO为直线1BC与平面11BBDD所成的角,设正方体棱长为1,则122CO,12BC,1111sin2COCBOBC,所以,直线1BC与平面11BBDD所成的角为30,故C错误;因为1CC平面ABCD,所以1CBC为直线1BC与平面ABCD所成的角,易得145CBC,故D正确.故选:ABD10.已知函数3()1fxxx,则()A.()fx有两个极值点B.()fx有三个零点C.点(0,1)是曲线()yfx的对称中心D.直线2yx是曲线()yfx的切线【答案】AC【解析】【分析】利用极值点的定义可判断A,结合()fx的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.【详解】由题,231fxx,令0fx得33x或33x,学科网(北京)股份有限公司令()0fx得3333x,所以()fx在33(,)33上单调递减,在3(,)3,3(,)3上单调递增,所以33x是极值点,故A正确;因323()1039f,323()1039f,250f,所以,函数fx在3,3上有一个零点,当33x时,303fxf,即函数fx在33,+上无零点,综上所述,函数()fx有一个零点,故B错误;令3()hxxx,该函数的定义域为R,33hxxxxxhx,则()hx是奇函数,(0,0)是()hx的对称中心,将()hx的图象向上移动一个单位得到()fx的图象,所以点(0,1)是曲线()yfx的对称中心,故C正确;令2312fxx,可得1x,又(1)11ff,当切点为(1,1)时,切线方程为21yx,当切点为(1,1)时,切线方程为23yx,故D错误.故选:AC11.已知O为坐标原点,点(1,1)A在抛物线2:2(0)Cxpyp上,过点(0,1)B的直线交C于P,Q两点,则()A.C的准线为1yB.直线AB与C相切C.2|OPOQOAD.2||||||BPBQBA【答案】BCD【解析】【分析】求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.【详解】将点A的代入抛物线方程得12p,所以抛物线方程为2xy,故准线方程为.学科网(北京)股份有限公司14y,A错误;1(1)210ABk,所以直线AB的方程为21yx,联立221yxxy,可得2210xx,解得1x,故B正确;设过B的直线为l,若直线l与y轴重合,则直线l与抛物线C只有一个交点,所以,直线l的斜率存在,设其方程为1ykx,1122(,),(,)PxyQxy,联立21ykxxy,得210xkx,所以21212Δ401kxxkxx,所以2k或2k,21212()1yyxx,又2221111||OPxyyy,2222222||OQxyyy,所以2121212||||(1)(1)||2||OPOQyyyykxkxkOA,故C正确;因为21||1||BPk

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功