1河南省2018年中考数学真题试题注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。答在试卷上的答案无效。一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.的相反数是()A.B.C.D.2.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿元”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.某正方体的每个面上那有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.下列运算正确的是()A.(-x2)3=-x5B.x2+x3=x5C.x3·x4=x7D.2x3-x3=15.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%,关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是06.《九章算术》中记载:”今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()2A.B.C.D.7.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0B.x2=xC.x2+3=2xD.(x-1)2+1=08.现有4张卡片,其中3张卡片正面上的图案是“۞”,1张卡片正面上的图案是“”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片正面图案相同的概率是()A.169B.43C.83D.219.如图,已知YAOBC的顶点O(0,0),A(-1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于21DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G.则点G的坐标为()A.(5-1,2)B.(5,2)C.(3-5,-2)D.(5-2,2)10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运到点B.图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2C.25D.25二、填空题(每小题3分,共15分)11.计算:-5-9=_______.12.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为_______.13.不等式组x524x3,的最小整数解是_______.14.如图,在△ABC中,∠ACB=90°,AC=BC=2.将△ABC绕AC的中点D逆时针旋转90°得到△ABC,其中点B的运动路径为¼'BB,则图中阴影部分的面积为______.15.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△'ABC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交'AB所在直线于点F,连接'AE.当△'AEF为直角三角形时,AB的长为________.3三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)÷,其中x=.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(k>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.治理杨絮——您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他419.(9分)如图,AB是圆0的直径,DO垂直于点O,连接DA交圆O于点C,过点C作圆O的切线交DO于点E,连接BC交DO于点F。(1)求证:CE=EF;(2)连接AF并延长,交圆O于点G,填空:①当∠D的度数为______时,四边形ECFG为菱形;②当∠D的度数为______时,四边形ECOG为正方形。20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离,某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答。如图所示,底座上A,B两点间的距离为90cm,低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°,求高、低杠间的水平距离CH的长。(结果精确到1cm,参考数据:sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500。sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)521.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系,关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润m(元)87.5187.5187.587.5(注:日销售利润m=日销售量×(销售单价-成本单价)(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值。(2)根据以上信息,填空:该产品的成品单价是_______元,当销售单价x=_______元时,日销售利润m最大,最大值是_______元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系,若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M,填空:①的值为_______;②∠AMB的度数为_______。(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M,请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长。623.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x-5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.78910