2019年江苏高考数学试题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。本卷满分为160分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一片交回。2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。参考公式:样本数据12,,,nxxx…的方差2211niisxxn,其中11niixxn.柱体的体积VSh,其中S是柱体的底面积,h是柱体的高.锥体的体积13VSh,其中S是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{1,0,1,6}A,{|0,}BxxxR,则AB▲.2.已知复数(2i)(1i)a的实部为0,其中i为虚数单位,则实数a的值是▲.3.下图是一个算法流程图,则输出的S的值是▲.4.函数276yxx的定义域是▲.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是▲.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是▲.7.在平面直角坐标系xOy中,若双曲线2221(0)yxbb经过点(3,4),则该双曲线的渐近线方程是▲.8.已知数列*{}()nanN是等差数列,nS是其前n项和.若25890,27aaaS,则8S的值是▲.9.如图,长方体1111ABCDABCD的体积是120,E为1CC的中点,则三棱锥E-BCD的体积是▲.10.在平面直角坐标系xOy中,P是曲线4(0)yxxx上的一个动点,则点P到直线x+y=0的距离的最小值是▲.11.在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是▲.12.如图,在ABC△中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若6ABACAOEC,则ABAC的值是▲.13.已知tan2π3tan4,则πsin24的值是▲.14.设(),()fxgx是定义在R上的两个周期函数,()fx的周期为4,()gx的周期为2,且()fx是奇函数.当2(]0,x时,2()1(1)fxx,(2),01()1,122kxxgxx,其中k0.若在区间(0,9]上,关于x的方程()()fxgx有8个不同的实数根,则k的取值范围是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=2,cosB=23,求c的值;(2)若sincos2ABab,求sin()2B的值.16.(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(本小题满分14分)如图,在平面直角坐标系xOy中,椭圆C:22221(0)xyabab的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:222(1)4xya交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆....O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.19.(本小题满分16分)设函数()()()(),,,Rfxxaxbxcabc、()f'x为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和()f'x的零点均在集合{3,1,3}中,求f(x)的极小值;(3)若0,01,1abc„,且f(x)的极大值为M,求证:M≤427.20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{an}*()nN满足:245132,440aaaaaa,求证:数列{an}为“M-数列”;(2)已知数列{bn}满足:111221,nnnbSbb,其中Sn为数列{bn}的前n项和.①求数列{bn}的通项公式;②设m为正整数,若存在“M-数列”{cn}*()nN,对任意正整数k,当k≤m时,都有1kkkcbc成立,求m的最大值.数学Ⅱ(附加题)21.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵3122A(1)求A2;(2)求矩阵A的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,2,42AB,直线l的方程为sin34.(1)求A,B两点间的距离;(2)求点B到直线l的距离.C.[选修4-5:不等式选讲](本小题满分10分)设xR,解不等式||+|21|2xx.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,nnnxaaxaxaxnnN….已知23242aaa.(1)求n的值;(2)设(13)3nab,其中*,abN,求223ab的值.23.(本小题满分10分)在平面直角坐标系xOy中,设点集{(0,0),(1,0),(2,0),,(,0)}nAn,(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.nnBnCnnN令nnnnMABC.从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).解析版绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。本卷满分为160分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一片交回。2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。参考公式:样本数据12,,,nxxx…的方差2211niisxxn,其中11niixxn.柱体的体积VSh,其中S是柱体的底面积,h是柱体的高.锥体的体积13VSh,其中S是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,6}A,0,BxxxR,则AB_____.【答案】{1,6}.【解析】【分析】由题意利用交集的定义求解交集即可.【详解】由题知,{1,6}AB.【点睛】本题主要考查交集的运算,属于基础题.2.已知复数(2i)(1i)a的实部为0,其中i为虚数单位,则实数a的值是_____.【答案】2.【解析】【分析】本题根据复数的乘法运算法则先求得z,然后根据复数的概念,令实部为0即得a的值.【详解】2(a2)(1i)222(2)iaaiiiaai,令20a得2a.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.3.下图是一个算法流程图,则输出的S的值是_____.【答案】5.【解析】【分析】结合所给的流程图运行程序确定输出的值即可.【详解】执行第一次,1,1422xSSx不成立,继续循环,12xx;执行第二次,3,2422xSSx不成立,继续循环,13xx;执行第三次,3,342xSSx不成立,继续循环,14xx;执行第四次,5,442xSSx成立,输出5.S【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.4.函数276yxx的定义域是_____.【答案】[1,7].【解析】【分析】由题意得到关于x的不等式,解不等式可得函数的定义域.【详解】由已知得2760xx,即2670xx解得17x,故函数的定义域为[1,7].【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.【答案】53.【解析】【分析】由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为678891086,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63.【点睛】本题主要考查方差的计算公式,属于基础题.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.【答案】710.【解析】【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C种情况.若选出的2名学生恰有1名女生,有11326CC种情况,若选出的2名学生都是女生,有221C种情况,所以所求的概率为6171010.【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.7.在平面直角坐标系xOy中,若双曲线2221(0)yxbb经过点(3,4),则该双曲线的渐近线方程是_____.【答案】2yx.【解析】【分析】根据条件求b,再代入双曲线的渐近线方程得出答案.【详解】由已知得222431b,解得2b或2b,因

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功