1993年江西高考理科数学真题及答案一、选择题(共17小题,每小题4分,满分68分)1.(4分)函数f(x)=sinx+cosx的最小正周期是()A.2πB.C.πD.2.(4分)如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()A.B.C.D.23.(4分)(2012•北京模拟)和直线3x﹣4y+5=0关于x轴对称的直线的方程为()A.3x+4y﹣5=0B.3x+4y+5=0C.﹣3x+4y﹣5=0D.﹣3x+4y+5=04.(4分)极坐标方程所表示的曲线是()A.焦点到准线距离为的椭圆B.焦点到准线距离为的双曲线右支C.焦点到准线距离为的椭圆D.焦点到准线距离为的双曲线右支5.(4分)在[﹣1,1]上是()A.增函数且是奇函数B.增函数且是偶函数C.减函数且是奇函数D.减函数且是偶函数6.(4分)的值为()A.B.C.D.7.(4分)(2002•广东)设集合M=,N=,则()A.M=NB.M⊂NC.M⊃ND.M∩N=Φ8.(4分)sin20°cos70°+sin10°sin50°的值是()A.B.C.D.9.(4分)参数方程(0<θ<2π)表示()A.双曲线的一支,这支过点B.抛物线的一部分,这部分过C.双曲线的一支,这支过点D.抛物线的一部分,这部分过10.(4分)若a、b是任意实数,且a>b,则()A.a2>b2B.C.lg(a﹣b)>0D.11.(4分)一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线12.(4分)圆柱轴截面的周长l为定值,那么圆柱体积的最大值是()A.B.C.D.13.(4分)(+1)4(x﹣1)5展开式中x4的系数为()A.﹣40B.10C.40D.4514.(4分)直角梯形的一个内角为45°,下底长为上底长的,这个梯形绕下底所在的直线旋转一周所成的旋转体的全面积为(5+)π,则旋转体的体积为()A.2πB.C.D.15.(4分)已知a1,a2,…,a8为各项都大于零的等比数列,公式q≠1,则()A.a1+a8>a4+a5B.a1+a8<a4+a5C.a1+a8=a4+a5D.a1+a8和a4+a5的大小关系不能由已知条件确定16.(4分)(2014•黄山一模)设有如下三个命题:甲:相交直线l、m都在平面α内,并且都不在平面β内;乙:直线l、m中至少有一条与平面β相交;丙:平面α与平面β相交.当甲成立时()A.乙是丙的充分而不必要条件B.乙是丙的必要而不充分条件C.乙是丙的充分且必要条件D.乙既不是丙的充分条件又不是丙的必要条件17.(4分)将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法有()A.6种B.9种C.11种D.23种二、填空题(共6小题,每小题4分,满分24分)18.(4分)=_________.19.(4分)若双曲线=1与圆x2+y2=1没有公共点,则实数k的取值范围为_________.20.(4分)从1,2,…,10这十个数中取出四个数,使它们的和为奇数,共有_________种取法(用数字作答).21.(4分)设f(x)=4x﹣2x+1,则f﹣1(0)=_________.22.(4分)建造一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,则水池的最低造价为_________.23.(4分)如图,ABCD是正方形,E是AB的中点,如将△DAE和△CBE分别沿虚线DE和CE折起,使AE与BE重合,记A与B重合后的点为P,则面PCD与面ECD所成的二面角为_________度.三、解答题(共5小题,满分58分)24.(10分)已知f(x)=loga(a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x取值范围.25.(12分)已知数列Sn为其前n项和.计算得观察上述结果,推测出计算Sn的公式,并用数学归纳法加以证明.26.(12分)已知:平面α∩平面β=直线a.α,β同垂直于平面γ,又同平行于直线b.求证:(1)a⊥γ;(2)b⊥γ.27.(12分)在面积为1的△PMN中,tan∠PMN=,tan∠MNP=﹣2.建立适当的坐标系,求以M,N为焦点且过点P的椭圆方程.28.(12分)设复数z=cosθ+isinθ(0<θ<π),,并且,,求θ.1993年全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共17小题,每小题4分,满分68分)1.(4分)函数f(x)=sinx+cosx的最小正周期是()A.2πB.C.πD.考点:三角函数中的恒等变换应用.分析:把三角函数式整理变形,变为f(x)=Asin(ωx+φ)的形式,再用周期公式求出周期,变形时先提出,式子中就出现两角和的正弦公式,公式逆用,得到结论.解答:解:∵f(x)=sinx+cosx=(=,∴T=2π,故选A点评:本题关键是逆用公式,抓住公式的结构特征对提高记忆公式起到至关重要的作用,而且抓住了公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点.2.(4分)如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()A.B.C.D.2考点:双曲线的简单性质.专题:计算题.分析:由双曲线的焦距为6,两条准线间的距离为4,能求出a,c,从而得到该双曲线的离心率.解答:解:由题意知,∴a2=6,c=3,∴.故选C.点评:本题考查双曲线的离心率、准线方程、焦距,要求熟练掌握双曲线的性质.3.(4分)(2012•北京模拟)和直线3x﹣4y+5=0关于x轴对称的直线的方程为()A.3x+4y﹣5=0B.3x+4y+5=0C.﹣3x+4y﹣5=0D.﹣3x+4y+5=0考点:与直线关于点、直线对称的直线方程.分析:求出和直线3x﹣4y+5=0关于x轴对称的直线的斜率,再求出直线3x﹣4y+5=0和x轴的交点,可求答案.解答:解:和直线3x﹣4y+5=0关于x轴对称的直线,其斜率与直线3x﹣4y+5=0的斜率相反,设所求直线为3x+4y+b=0,两直线在x轴截距相等,所以所求直线是3x+4y+5=0.故选B.点评:本题是直线的对称问题,一般要用垂直平分解答;本题方法较多,由于对称轴是坐标轴,所以借助斜率,比较简单.4.(4分)极坐标方程所表示的曲线是()A.焦点到准线距离为的椭圆B.焦点到准线距离为的双曲线右支C.焦点到准线距离为的椭圆D.焦点到准线距离为的双曲线右支考点:简单曲线的极坐标方程.专题:计算题.分析:利用圆锥曲线统一的极坐标方程,求出圆锥曲线的离心率和焦点到准线距离,从而确定选项.解答:解:将原极坐标方程为,化成:极坐标方程为ρ=,对照圆锥曲线统一的极坐标方程得:e=>1,表示双曲线,且焦点到准线距离为.故选B.点评:本题主要考查了圆锥曲线的极坐标方程,属于基础题.5.(4分)在[﹣1,1]上是()A.增函数且是奇函数B.增函数且是偶函数C.减函数且是奇函数D.减函数且是偶函数考点:幂函数的性质.专题:数形结合.分析:做出幂函数的图象,根据幂函数的图象与性质:可得在[﹣1,1]上的单调性和奇偶性.解答:解:考查幂函数.∵>0,根据幂函数的图象与性质可得在[﹣1,1]上的单调增函数,是奇函数.故选A.点评:本题主要考查幂函数的图象与性质,幂函数是重要的基本初等函数模型之一.学习幂函数重点是掌握幂函数的图形特征,即图象语言,熟记幂函数的图象、性质.6.(4分)的值为()A.B.C.D.考点:极限及其运算.专题:计算题.分析:分子分母都除以n2,原式简化为,由此可得到的值.解答:解:==.点评:本题考查数列的极限,解题时要注意正确选用公式.7.(4分)(2002•广东)设集合M=,N=,则()A.M=NB.M⊂NC.M⊃ND.M∩N=Φ考点:集合的包含关系判断及应用.分析:从元素满足的公共属性的结构入手,首先对集合N中的k分奇数和偶数讨论,易得两集合的关系.解答:解:当k=2m(为偶数)时,N==当k=2m﹣1(为奇数)时,N===M∴M⊂N故选B点评:本题主要考查集合表示方法中的描述法.8.(4分)sin20°cos70°+sin10°sin50°的值是()A.B.C.D.考点:三角函数中的恒等变换应用.分析:从题目的结构形式来看,本题是要逆用两角和或差的正弦余弦公式,但是题目又不完全符合,因此有一个整理的过程,整理发现,刚才直观的认识不准确,要前后两项都用积化和差,再合并同类项.解答:解:原式=]==,故选A点评:在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点.本题开始考虑时差点出错,这是解题时好多同学要经历的过程.9.(4分)参数方程(0<θ<2π)表示()A.双曲线的一支,这支过点B.抛物线的一部分,这部分过C.双曲线的一支,这支过点D.抛物线的一部分,这部分过考点:参数方程化成普通方程.专题:计算题.分析:将参数方程化为普通方程,然后再对A、B、C、D进行判断;解答:解:∵x=|cos+sin|,∴x2=1+sinθ,∵y=(1+sinθ),∴y=x2,是抛物线;当x=1时,y=;故选B.点评:此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.10.(4分)若a、b是任意实数,且a>b,则()A.a2>b2B.C.lg(a﹣b)>0D.考点:不等式比较大小.专题:综合题.分析:由题意可知a>b,对于选项A、B、C举出反例判定即可.解答:解:a、b是任意实数,且a>b,如果a=0,b=﹣2,显然A不正确;如果a=0,b=﹣2,显然B无意义,不正确;如果a=0,b=﹣,显然C,lg>0,不正确;满足指数函数的性质,正确.故选D.点评:本题考查比较大小的方法,考查各种代数式的意义和性质,是基础题.11.(4分)一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线考点:双曲线的定义.专题:计算题.分析:设动圆P的半径为r,然后根据⊙P与⊙O:x2+y2=1,⊙F:x2+y2﹣8x+12=0都外切得|PF|=2+r、|PO|=1+r,再两式相减消去参数r,则满足双曲线的定义,问题解决.解答:解:设动圆的圆心为P,半径为r,而圆x2+y2=1的圆心为O(0,0),半径为1;圆x2+y2﹣8x+12=0的圆心为F(4,0),半径为2.依题意得|PF|=2+r|,|PO|=1+r,则|PF|﹣|PO|=(2+r)﹣(1+r)=1<|FO|,所以点P的轨迹是双曲线的一支.故选C.点评:本题主要考查双曲线的定义.12.(4分)圆柱轴截面的周长l为定值,那么圆柱体积的最大值是()A.B.C.D.考点:旋转体(圆柱、圆锥、圆台).专题:计算题;综合题.分析:设出圆柱的底面半径和高,求出体积表达式,通过求导求出体积的最大值.解答:解:圆柱底面半径R,高H,圆柱轴截面的周长L为定值:4R+2H=L,H=﹣2R,V=SH=πR2H=πR2(﹣2R)=πR2﹣2πR3求导:V'=πRL﹣6πR2令V'=0,πRL﹣6πR2=0,πR(L﹣6R)=0,L﹣6R=0,R=,当R=,圆柱体积的有最大值,圆柱体积的最大值是:V=πR2﹣2πR3=故选A.点评:本题考查旋转体的体积,导数的应用,是中档题.13.(4分)(+1)4(x﹣1)5展开式中x4的系数为()A.﹣40B.10C.40D.45考点:二项式定理的应用.专题:计算题.分析:先将展开式的系数转化成几个二项展开式系数乘积的和,再利用二项展开式的通项公式求出各个二项式的系数.解答:解:展开式中x4的系数是下列几部分的和:的常数项与(x﹣1)5展开式的含x4的项的系数的乘积含x项的系数与(x﹣1)5展开式的含x3的项的系数的乘积含x2