第1页(共4页)2015年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5B.4C.3D.22.(5分)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=( )A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)3.(5分)已知复数z满足(z﹣1)i=1+i,则z=( )A.﹣2﹣iB.﹣2+iC.2﹣iD.2+i4.(5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.B.C.D.5.(5分)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=( )A.3B.6C.9D.126.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛7.(5分)已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S8=4S4,则a10=( )A.B.C.10D.128.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A.(kπ﹣,kπ+),k∈zB.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈zD.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=( )A.5B.6C.7D.8第2页(共4页)10.(5分)已知函数f(x)=,且f(a)=﹣3,则f(6﹣a)=( )A.﹣B.﹣C.﹣D.﹣11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A.1B.2C.4D.812.(5分)设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=( )A.﹣1B.1C.2D.4 二、本大题共4小题,每小题5分.13.(5分)在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n= .14.(5分)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a= .15.(5分)若x,y满足约束条件,则z=3x+y的最大值为 .16.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.18.(12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.第3页(共4页)(xi﹣)2(wi﹣)2(xi﹣)(yi﹣)(wi﹣)(yi﹣)46.65636.8289.81.61469108.8表中wi=i,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1v1),(u2v2)…..(unvn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.(1)求k的取值范围;(2)若•=12,其中O为坐标原点,求|MN|.21.(12分)设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln. 四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小. 五、【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x第4页(共4页)轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积. 六、【选修4-5:不等式选讲】24.已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.