2012年北京高考理科数学试题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2012年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷共5页.150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题。每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合A={x∈R|3x+2>0}B={x∈R|(x+1)(x-3)>0}则A∩B=A(-,-1)B(-1,-23)C(-23,3)D(3,+)2.设不等式组20,20yx,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是(A)4(B)22(C)6(D)443.设a,b∈R。“a=0”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S值为()A.2B.4C.8D.165.如图.∠ACB=90º,CD⊥AB于点D,以BD为直径的圆与BC交于点E.则()A.CE•CB=AD•DBB.CE•CB=AD•ABC.AD•AB=CD2D.CE•EB=CD26.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A.24B.18C.12D.67.某三棱锥的三视图如图所示,该三梭锥的表面积是()A.28+65B.30+65C.56+125D.60+1258.某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高。m值为()A.5B.7C.9D.11第二部分(非选择题共110分)二.填空题共6小题。每小题5分。共30分.9.直线ttytx(12为参数)与曲线(sin3cos3yx为参数)的交点个数为______。10.已知}{na等差数列nS为其前n项和。若211a,32aS,则2a=_______。11.在△ABC中,若a=2,b+c=7,cosB=41,则b=_______。12.在直角坐标系xOy中,直线l过抛物线=4x的焦点F.且与该撇物线相交于A、B两点.其中点A在x轴上方。若直线l的倾斜角为60º.则△OAF的面积为13.已知正方形ABCD的边长为1,点E是AB边上的动点,则CBDE的值为________,DCDE的最大值为______。14.已知)3)(2()(mxmxmxf,22)(xxg,若同时满足条件:①Rx,0)(xf或0)(xg;②)4,(x,)(xf0)(xg。则m的取值范围是_______。三、解答题公6小题,共80分。解答应写出文字说明,演算步骤或证明过程。15.(本小题共13分)已知函数xxxxxfsin2sin)cos(sin)(。(1)求)(xf的定义域及最小正周期;(2)求)(xf的单调递增区间。16.(本小题共14分)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(I)求证:A1C⊥平面BCDE;(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;(III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由17.(本小题共13分)近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(Ⅰ)试估计厨余垃圾投放正确的概率;(Ⅱ)试估计生活垃圾投放错误额概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为cba,,其中a>0,cba=600。当数据cba,,的方差2s最大时,写出cba,,的值(结论不要求证明),并求此时2s的值。(注:])()()[(1222212xxxxxxnsn,其中x为数据nxxx,,,21的平均数)18.(本小题共13分)已知函数2()10fxaxa,3()gxxbx.(1)若曲线()yfx与曲线()ygx在它们的交点1,c处具有公共切线,求a,b的值;(2)当24ab时,求函数()()fxgx的单调区间,并求其在区间,1上的最大值.19.(本小题共14分)已知曲线22:528CmxmymR.(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;(2)设4m,曲线C与y轴的交点为A,B(点A位于点B的上方),直线4ykx与曲线C交于不同的两点M,N,直线1y与直线BM交于点G,求证:A,G,N三点共线.20.(本小题共13分)设A是由mn个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记,Smn为所有这样的数表组成的集合.对于,ASmn,记()irA为A的第i行各数之和(1im剟),()jcA为A的第j列各数之和(1jn剟);记()kA为1()rA,2()rA,…,()mrA,1()cA,2()cA,…,()ncA中的最小值.(1)对如下数表A,求()kA的值;110.80.10.31(2)设数表2,3AS形如求()kA的最大值;(3)给定正整数t,对于所有的2,21ASt,求()kA的最大值.2012年北京市高考数学试卷(理科)参考答案与试题解析11cab1一、选择题共8小题.每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.(5分)(2012•北京)已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=()A.(﹣∞,﹣1)B.(﹣1,)C.﹙,3﹚D.(3,+∞)考点:一元二次不等式的解法;交集及其运算.菁优网版权所有专题:集合.分析:求出集合B,然后直接求解A∩B.解答:解:因为B={x∈R|(x+1)(x﹣3)>0﹜={x|x<﹣1或x>3},又集合A={x∈R|3x+2>0﹜={x|x},所以A∩B={x|x}∩{x|x<﹣1或x>3}={x|x>3},故选:D.点评:本题考查一元二次不等式的解法,交集及其运算,考查计算能力.2.(5分)(2012•北京)设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.考点:二元一次不等式(组)与平面区域;几何概型.菁优网版权所有专题:概率与统计.分析:本题属于几何概型,利用“测度”求概率,本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域和到原点的距离大于2的点构成的区域的面积后再求它们的比值即可.解答:解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,面积为=4﹣π,∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P=故选:D.点评:本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到,本题是通过两个图形的面积之比得到概率的值.3.(5分)(2012•北京)设a,b∈R.“a=O”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:复数的基本概念;必要条件、充分条件与充要条件的判断.菁优网版权所有专题:数系的扩充和复数.分析:利用前后两者的因果关系,即可判断充要条件.解答:解:因为a,b∈R.“a=O”时“复数a+bi不一定是纯虚数”.“复数a+bi是纯虚数”则“a=0”一定成立.所以a,b∈R.“a=O”是“复数a+bi是纯虚数”的必要而不充分条件.故选B.点评:本题考查复数的基本概念,必要条件、充分条件与充要条件的判断,考查基本知识的掌握程度.4.(5分)(2012•北京)执行如图所示的程序框图,输出的S值为()A.2B.4C.8D.16考点:循环结构.菁优网版权所有专题:算法和程序框图.分析:列出循环过程中S与K的数值,不满足判断框的条件即可结束循环.解答:解:第1次判断后S=1,k=1,第2次判断后S=2,k=2,第3次判断后S=8,k=3,第4次判断后3<3,不满足判断框的条件,结束循环,输出结果:8.故选C.点评:本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力.5.(5分)(2012•北京)如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E.则()A.CE•CB=AD•DBB.CE•CB=AD•ABC.AD•AB=CD2D.CE•EB=CD2考点:与圆有关的比例线段.菁优网版权所有专题:直线与圆.分析:连接DE,以BD为直径的圆与BC交于点E,DE⊥BE,由∠ACB=90°,CD⊥AB于点D,△ACD∽△CBD,由此利用三角形相似和切割线定理,能够推导出CE•CB=AD•BD.解答:解:连接DE,∵以BD为直径的圆与BC交于点E,∴DE⊥BE,∵∠ACB=90°,CD⊥AB于点D,∴△ACD∽△CBD,∴,∴CD2=AD•BD.∵CD2=CE•CB,∴CE•CB=AD•BD,故选A.点评:本题考查与圆有关的比例线段的应用,是基础题.解题时要认真审题,仔细解答,注意三角形相似和切割线定理的灵活运用.6.(5分)(2012•北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A.24B.18C.12D.6考点:计数原理的应用.菁优网版权所有专题:算法和程序框图.分析:分类讨论:从0、2中选一个数字0,则0只能排在十位;从0、2中选一个数字2,则2排在十位或百位,由此可得结论.解答:解:从0、2中选一个数字0,则0只能排在十位,从1、3、5中选两个数字排在个位与百位,共有=6种;从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有=6种;2排在百位,从1、3、5中选两个数字排在个位与十位,共有=6种;故共有3=18种故选B.点评:本题考查计数原理的运用,考查分类讨论的数学思想,正确分类是关键.7.(5分)(2012•北京)某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6B.30+6C.56+12D.60+12考点:由三视图求面积、体积.菁优网版权所有专题:立体几何.分析:通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.解答:解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底==10,S后=,S右==10,S左==6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.点评:本题考查三视图与几何体的关系,注意表面积的求法,考查空间想象能力计算能力.8.(5分)(2012•北京)某棵果树前n年的总产量Sn与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,则m的值为()A.5B.7C.9D.11考点:函数的图象与图象变化;函数的表示方法.菁优网版权所有专题:函数的性质及应用.分析:由已知中图象表示某棵果树前n年的总产量S与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前n年的总产量S与n在图中对应P(S,n)点则前n年的年平均产量即为直线OP的斜率由图易得当n=9时,直线OP的斜率最大即前9年的年平均产量最高,故选C点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.二.填空题共6小题.每小题5分.共30分.9.(5分)

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功