2010年山东省高考数学试卷(理科)word版试卷及解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共24页2010年山东高考数学理科源头第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。(1)已知全集U=R,集合}2|1||{xxM,则MCU(A)}31|{xx(B)}31|{xx(C)}31|{xxx或(D)}31|{xxx或(2)已知),(2Rbaibiia,其中i为虚数单位,则ba(A)-1(B)1(C)2(D)3(3)在空间,下列命题正确的是(A)平行直线的平行投影重合(B)平行于同一直线的两个平面平行(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两条直线平行(4)设)(xf为定义在R上的奇函数,当0x时,bbxxfx(22)(为常数),则)1(f(A)3(B)1(C)-1(D)-3(5)已知随机变量服从正态分布),1(2N,若023.0)2(P,则)22(P(A)0.477(B)0.628(C)0.954(D)0.977(6)样本中共有五个个体,其值分别为3,2,1,0,a,若该样本的平均值为1,则样本方差为(A)56(B)56(C)2(D)2(7)由曲线32,xyxy围成的封闭图形面积为(A)121(B)41(C)31(D)127(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种(B)42种(C)48种(D)54种(9)设}{na是等比数列,则“321aaa”是“数列}{na是递增数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件第2页共24页(10)设变量yx,满足约束条件,08,10105,02yxyxyx则目标函数yxz43的最大值和最小值分别为(A)3,-11(B)-3,-11(C)11,-3(D)11,3(11)函数22xyx的图象大致是(A)(B)(C)(D)(12)定义平面向量之间的一种运算“⊙”如下:对任意的)(),,(qpbvma。令a⊙.npmqb下面说法错误的是(A)若a与b共线,则a⊙0b(B)a⊙bb⊙a(C)对任意的)(,aR有⊙ab(⊙)b(D)a(⊙222||||)()babab第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。(13)执行右图所示的程序框图,若输入10x,则输出y的值为。(14)若对任意axxxx13,02恒成立,则a的取值范围是。(15)在ABC中,角A,B,C所对的边分别为cba,,,若2cossin,2,2BBba,则角A的大小为。(16)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线1:xyl被圆C所截得的弦长为22,则过圆心且与直线l垂直的直线的方程为。第3页共24页三、解答题:本大题共6小题,共74分。(17)(本小题满分12分)已知函数)0)(2sin(21coscossin2sin21)(2xxxf,其图象过点).21,6((Ⅰ)求的值;(Ⅱ)将函数)(xfy的图象上各点的横坐标缩短到原来的21,纵坐标不变,得到函数)(xgy的图象,求函数)(xg在]4,0[上的最大值和最小值。(18)(本小题满分12分)已知等差数列}{na满足:}.{26,7753naaaa的前n项和为.nS(Ⅰ)求4a及nS;(Ⅱ)令112nnab)(*Nn,求数列}{nb的前n项和.nT(19)(本小题满分12分)如图,在五棱锥P—ABCDE中,PA平面ABCDE,AB//CD,AC//ED,AE//BC,42,22,45AEBCABABC,三角形PAB是等腰三角形。(Ⅰ)求证:平面PCD平面PAC;(Ⅱ)求直线PB与平面PCD所成角的大小;(Ⅲ)求四棱锥P—ACDE的体积。(20)(本小题满分12分)某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:①每位参加者计分器的初初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;ABCDEP第4页共24页③每位参加者按问题A、B、C、D顺序作答,直至答题结束.假设甲同学对问题A、B、C、D回答正确的概率依次为41,31,21,43,且各题回答正确与否相互之间没有影响.(Ⅰ)求甲同学能进入下一轮的概率;(Ⅱ)用表示甲内当家本轮答题结束时答题的个数,求的分布列和数学期望E.(21)(本小题满分12分)如图,已知椭圆)0(12222babyax的离心率为22,以该椭圆上的点和椭圆的左、右焦点21,FF为顶点的三角形的周长为)12(4,一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于项点的任一点,直线1PF和2PF与椭圆的交点分别为A、B和C、D.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF、2PF的斜率分别为1k、2k,证明:121kk;(Ⅲ)是否存在常数,使得CDABCDAB恒成立?若存在,求的值;若不存在,请说明理由.(22)(本小题满分14分)已知函数)(111)(Raxaaxnxxf.(Ⅰ)当21a时,讨论)(xf的单调性;(Ⅱ)设41.42)(2abxxxg当时,若对任意)2,0(1x,存在]2,1[2x,使)()(21xgxf,求实数b的取值范围.F2PF1DCBAoyx第5页共24页参考答案一、选择题:本题考查基础知识和基本运算,每小题5分,满分60分。(1)C(2)B(3)D(4)D(5)C(6)D(7)A(8)B(9)C(10)A(11)A(12)B(1)已知全集U=R,集合M={x||x-1|2},则UCM=(A){x|-1x3}(B){x|-1x3}(C){x|x-1或x3}(D){x|x-1或x3}【答案】C【解析】因为集合M=x|x-1|2x|-1x3,全集U=R,所以UCM=x|x-1x3或,故选C.【命题意图】本题考查集合的补集运算,属容易题.(2)已知2(,)aibiabi2aibii(a,b∈R),其中i为虚数单位,则a+b=(A)-1(B)1(C)2(D)3【答案】B【解析】由a+2i=b+ii得a+2i=bi-1,所以由复数相等的意义知:a=-1,b=2,所以a+b=1,故选B.【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。(3)在空间,下列命题正确的是(A)平行直线的平行投影重合(B)平行于同一直线的两个平面平行(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两条直线平行【答案】D【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以很容易得出答案。【命题意图】本题考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。(4)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=(A)3(B)1(C)-1(D)-3第6页共24页【答案】D解析:本题考查了奇函数的性质.∵xf是奇函数,故0200bf,故1b,∴3122111ff,故选D.(5)已知随机变量服从正态分布),1(2N,若023.0)2(P,则)22(P(A)0.477(B)0.628(C)0.954(D)0.977【答案】C解析:本题考查了正态曲线的对称性和曲线与x轴之间的面积为1.∵1,∴正态曲线关于直线0x即y轴对称.∴954.0023.02122122PP.故选C.(6)样本中共有五个个体,其值分别为3,2,1,0,a,若该样本的平均值为1,则样本方差为(A)56(B)56(C)2(D)2【答案】D解析:本题考查了均值与方差的求解公式.∵153210a,得1a.∴2131211101151222222s.(7)由曲线y=2x,y=3x围成的封闭图形面积为(A)112(B)14(C)13(D)712【答案】A【解析】由题意得:所求封闭图形的面积为1230x-x)dx=(1111-1=3412,故选A。解析:本题考查了利用定积分求图形的面积.∵32xyxy得交点为0,0,1,1,所以所求图形的面积是dxxxS1032121413141311043xx.第7页共24页另法:(估值法)如图作四边形OAMB,M(1,1),取A(35,0),则B(35,925),计算四边形OAMB的面积为91504,∴曲线y=2x,y=3x围成的封闭图形面积只能为112,故选A.【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种(B)42种(C)48种(D)54种【答案】B解析:本题考查了用两个原理及排列知识解决实际问题,求解时应注意分类讨论思想的应用.若甲在第一位,则有2444A种编排方案;若甲在第二位,则有18633313AA种编排方案.故共有421824种编排方案.(9)设}{na是等比数列,则“321aaa”是“数列}{na是递增数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】C【解析】若已知123aaa,则设数列na的公比为q,因为123aaa,所以有2111aaqaq,解得q1且1a0,所以数列na是递增数列;反之,若数列na是递增数列,则公比q1且1a0,所以2111aaqaq,即123aaa,所以123aaa是数列na是递增数列的充分必要条件。【命题意图】本题考查等比数列及充分必要条件的基础知识,属保分题。(10)设变量yx,满足约束条件20,5100,80,xyxyxy则目标函数yxz43的最大值和最小值分别为(A)3,-11(B)-3,-11(C)11,-3(D)11,3【答案】A11MBAoyx第8页共24页解析:本题考查了线性规划知识,求解时应明确线性目标函数的倾斜角与可行域边界直线的倾斜角的大小关系.如下图作出不等式组表示的可行域,由于yxz43的斜率介于02yx与0105yx之间,因此解0802yxyx得53xx,故当yxz43过点5,3A时,11minz;解080105yxyx得35xx,故当yxz43过点3,5B时,3maxz.可知当直线z=3x-4y平移到点(5,3)时,目标函数z=3x-4y取得最大值3;当直线z=3x-4y平移到点(3,5)时,目标函数z=3x-4y取得最小值-11,故选A。【命题意图】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函数z=3x-4y的几何意义是解答好本题的关键。(11)函数y=2x-2x的图像大致是【答案】A解析:本题考查了函数的图象等基础知识及学生的识图能力,求解时应根据单调性及第9页共24页0xf时根的情况判断.由22xyyx有三个交点可得22xyx有三个零点,故排除B,C.分析图象A,D的区别在于当x时,y,故

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功