2020年高考真题——数学试卷(理科)(新课标Ⅱ)(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高考资源网(ks5u.com)您身边的高考专家版权所有@高考资源网-1-2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()UABð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:1,0,1,2AB,则U2,3ABð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.若α为第四象限角,则()A.cos2α0B.cos2α0C.sin2α0D.sin2α0【答案】D【解析】【分析】由题意结合二倍角公式确定所给的选项是否正确即可.【详解】当6时,cos2cos03,选项B错误;高考资源网(ks5u.com)您身边的高考专家版权所有@高考资源网-2-当3时,2cos2cos03,选项A错误;由在第四象限可得:sin0,cos0,则sin22sincos0,选项C错误,选项D正确;故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()高考资源网(ks5u.com)您身边的高考专家版权所有@高考资源网-3-A.3699块B.3474块C.3402块D.3339块【答案】C【解析】【分析】第n环天石心块数为na,第一层共有n环,则{}na是以9为首项,9为公差的等差数列,设nS为{}na的前n项和,由题意可得322729nnnnSSSS,解方程即可得到n,进一步得到3nS.【详解】设第n环天石心块数为na,第一层共有n环,则{}na是以9为首项,9为公差的等差数列,9(1)99nann,设nS为{}na的前n项和,则第一层、第二层、第三层的块数分别为232,,nnnnnSSSSS,因为下层比中层多729块,所以322729nnnnSSSS,即3(927)2(918)2(918)(99)7292222nnnnnnnn即29729n,解得9n,所以32727(9927)34022nSS.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.高考资源网(ks5u.com)您身边的高考专家版权所有@高考资源网-4-5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230xy的距离为()A.55B.255C.355D.455【答案】B【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为,,0aaa,可得圆的半径为a,写出圆的标准方程,利用点2,1在圆上,求得实数a的值,利用点到直线的距离公式可求出圆心到直线230xy的距离.【详解】由于圆上的点2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,aa,则圆的半径为a,圆的标准方程为222xayaa.由题意可得22221aaa,可得2650aa,解得1a或5a,所以圆心的坐标为1,1或5,5,圆心到直线230xy的距离均为22555d;所以,圆心到直线230xy的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.6.数列{}na中,12a,mnmnaaa,若155121022kkkaaa,则k()A.2B.3C.4D.5【答案】C高考资源网(ks5u.com)您身边的高考专家版权所有@高考资源网-5-【解析】【分析】取1m,可得出数列na是等比数列,求得数列na的通项公式,利用等比数列求和公式可得出关于k的等式,由kN可求得k的值.【详解】在等式mnmnaaa中,令1m,可得112nnnaaaa,12nnaa,所以,数列na是以2为首项,以2为公比的等比数列,则1222nnna,1011011105101210122122212211212kkkkkkaaaa,1522k,则15k,解得4k.故选:C.【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【答案】A【解析】【分析】根据三视图,画出多面体立体图形,即可求得M点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,高考资源网(ks5u.com)您身边的高考专家版权所有@高考资源网-6-图中标出了根据三视图M点所在位置,可知在侧视图中所对应的点为E故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.设O为坐标原点,直线xa与双曲线2222:1(0,0)xyCabab的两条渐近线分别交于,DE两点,若ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32【答案】B【解析】【分析】因为2222:1(0,0)xyCabab,可得双曲线的渐近线方程是byxa,与直线xa联立方程求得D,E两点坐标,即可求得||ED,根据ODE的面积为8,可得ab值,根据2222cab,结合均值不等式,即可求得答案.【详解】2222:1(0,0)xyCabab双曲线的渐近线方程是byxa直线xa与双曲线2222:1(0,0)xyCabab的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限高考资源网(ks5u.com)您身边的高考专家版权所有@高考资源网-7-联立xabyxa,解得xayb故(,)Dab联立xabyxa,解得xayb故(,)Eab||2EDbODE面积为:1282ODESabab△双曲线2222:1(0,0)xyCabab其焦距为2222222168cabab当且仅当22ab取等号C的焦距的最小值:8故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.9.设函数()ln|21|ln|21|fxxx,则f(x)()A.是偶函数,且在1(,)2单调递增B.是奇函数,且在11(,)22单调递减C.是偶函数,且在1(,)2单调递增D.是奇函数,且在1(,)2单调递减【答案】D【解析】【分析】根据奇偶性的定义可判断出fx为奇函数,排除AC;当11,22x时,利用函数单调性高考资源网(ks5u.com)您身边的高考专家版权所有@高考资源网-8-的性质可判断出fx单调递增,排除B;当1,2x时,利用复合函数单调性可判断出fx单调递减,从而得到结果.【详解】由ln21ln21fxxx得fx定义域为12xx,关于坐标原点对称,又ln12ln21ln21ln21fxxxxxfx,fx为定义域上的奇函数,可排除AC;当11,22x时,ln21ln12fxxx,ln21yxQ在11,22上单调递增,ln12yx在11,22上单调递减,fx在11,22上单调递增,排除B;当1,2x时,212ln21ln12lnln12121xfxxxxx,2121x在1,2上单调递减,lnf在定义域内单调递增,根据复合函数单调性可知:fx在1,2上单调递减,D正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据fx与fx的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.10.已知△ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.3B.32C.1D.32【答案】C高考资源网(ks5u.com)您身边的高考专家版权所有@高考资源网-9-【解析】【分析】根据球O的表面积和ABC的面积可求得球O的半径R和ABC外接圆半径r,由球的性质可知所求距离22dRr.【详解】设球O的半径为R,则2416R,解得:2R.设ABC外接圆半径为r,边长为a,ABC是面积为934的等边三角形,21393224a,解得:3a,22229933434ara,球心O到平面ABC的距离22431dRr.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.11.若2233xyxy,则()A.ln(1)0yxB.ln(1)0yxC.ln||0xyD.ln||0xy【答案】A【解析】【分析】将不等式变为2323xxyy,根据23ttft的单调性知xy,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233xyxy得:2323xxyy,令23ttft,2xy为R上的增

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功