精品解析:2022年浙江省金华市中考数学真题(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学科网(北京)股份有限公司数学卷Ⅰ说明:本卷共有1大题,10小题.一、选择题(本题有10小题)1.在12,,3,22中,是无理数的是()A.2B.12C.3D.2【答案】C【解析】【分析】根据无理数定义判断即可;【详解】解:∵-2,12,2是有理数,3是无理数,故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.2.计算32aa的结果是()A.aB.6aC.6aD.5a【答案】D【解析】【分析】根据同底数幂的乘法法则计算判断即可.【详解】∵32aa=5a,故选D.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.3.体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.4163210B.71.63210C.61.63210D.516.3210【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,10na的形式中a的取值范围必须是110,a10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为71.63210.的学科网(北京)股份有限公司故选:B.【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a是整数数位只有一位的数,10的指数比原来的整数位数少1.4.已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cmB.3cmC.6cmD.13cm【答案】C【解析】【分析】先确定第三边的取值范围,后根据选项计算选择.【详解】设第三边的长为x,∵角形的两边长分别为5cm和8cm,∴3cm<x<13cm,故选C.【点睛】本题考查了三角形三边关系定理,熟练确定第三边的范围是解题的关键.5.观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为()A.5B.6C.7D.8【答案】D【解析】【分析】用总人数减去其他三组的人数即为所求频数.【详解】解:20-3-5-4=8,故组界为99.5~124.5这一组频数为8,故选:D.【点睛】本题考查频数分布直方图,能够根据要求读出相应的数据是解决本题的关键.的学科网(北京)股份有限公司6.如图,AC与BD相交于点O,,OAODOBOC,不添加辅助线,判定ABODCO△≌△的依据是()A.SSSB.SASC.AASD.HL【答案】B【解析】【分析】根据OAOD,OBOC,AOBCOD正好是两边一夹角,即可得出答案.【详解】解:∵在△ABO和△DCO中,OAODAOBCODOBOC,∴SASABODCO≌△△,故B正确.故选:B.【点睛】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.7.如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2),下列各地点中,离原点最近的是()学科网(北京)股份有限公司A.超市B.医院C.体育场D.学校【答案】A【解析】【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案.【详解】解:根据学校和体育场的坐标建立直角坐标系,超市到原点的距离为22215,医院到原点的距离为223110,学校到原点的距离为223110,体育场到原点的距离为224225,故选:A.【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.8.如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()学科网(北京)股份有限公司A.B.C.D.【答案】C【解析】【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∴将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∵两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.9.一配电房示意图如图所示,它是一个轴对称图形,已知6mBC,ABC,则房顶A离地面EF的高度为()A.(43sin)mB.(43tan)mC.34msinD.34mtana【答案】B【解析】学科网(北京)股份有限公司【分析】过点A作AD⊥BC于D,根据轴对称图形得性质即可得BD=CD,从而利用锐角三角函数正切值即可求得答案.【详解】解:过点A作AD⊥BC于D,如图所示:∵它是一个轴对称图形,∴132BDDCBCm,tan3ADADBD,即3tanAD,房顶A离地面EF的高度为(43tan)m,故选B.【点睛】本题考查了解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.10.如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为ABAE,,与BC相交于点G,BA的延长线过点C.若23BFGC,则ADAB的值为()学科网(北京)股份有限公司A.22B.4105C.207D.83【答案】A【解析】【分析】令BF=2x,CG=3x,FG=y,易证CGACFB△∽△,得出CGAGCFBF,进而得出y=3x,则AE=4x,AD=8x,过点E作EH⊥BC于点H,根据勾股定理得出EH=22x,最后求出ADAB的值.【详解】解:过点E作EH⊥BC于点H,又四边形ABCD为矩形,∴∠A=∠B=∠D=∠BCD=90°,AD=BC,∴四边形ABHE和四边形CDEH为矩形,∴AB=EH,ED=CH,∵23BFGC,∴令BF=2x,CG=3x,FG=y,则CF=3x+y,2BFx,52xyAG,由题意,得==90CAGCBF∠∠,又GCA∠为公共角,∴CGACFB△∽△,∴CGAGCFBF,则53232xyxxyx,整理,得30xyxy,解得x=-y(舍去),y=3x,∴AD=BC=5x+y=8x,EG=3x,HG=x,在Rt△EGH中EH2+HG2=EG2,则EH2+x2=(3x)2,解得EH=22x,EH=-22x(舍),∴AB=22x,学科网(北京)股份有限公司∴82222ADxABx.故选:A.【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,勾股定理求边长等知识,借助于相似三角形找到y=3x的关系式是解决问题的关键.卷Ⅱ说明:本卷共有2大题,14小题二、填空题(本题有6小题)11.因式分解:29x______.【答案】33xx【解析】【分析】根据平方差公式22ababab直接进行因式分解即可.【详解】解:29x223x33xx,故答案为:33xx.【点睛】本题考查利用公式法分解因式,熟练掌握平方差公式是解决问题的关键.12.若分式23x的值为2,则x的值是_______.【答案】4【解析】【分析】根据题意建立分式方程,再解方程即可;【详解】解:由题意得:223x去分母:223x去括号:226x移项,合并同类项:28x学科网(北京)股份有限公司系数化为1:4x经检验,x=4是原方程的解,故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键.13.一个布袋里装有7个红球、3个白球,它们除颜色外都相同.从中任意摸出1个球,摸到红球的概率是______.【答案】710【解析】【分析】先确定所有等可能性的数量,再确定红球事件的可能性数量,根据公式计算即可.【详解】∵所有等可能性有10种,红球事件的可能性有7种,∴摸到红球的概率是710,故答案:710.【点睛】本题考查了简单的概率计算,熟练掌握概率计算公式是解题的关键.14.如图,在RtABC中,90,30,2cmACBABC.把ABC沿AB方向平移1cm,得到ABCV,连结CC,则四边形ABCC的周长为_____cm.【答案】823【解析】【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cmACBABC,∴AB=2BC=4,∴AC=2216423ABBC,∵把ABC沿AB方向平移1cm,得到ABCV,∴1CC,=4+1=5AB,=2BCBC,为学科网(北京)股份有限公司∴四边形的周长为:23152823,故答案为:823.【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.15.如图,木工用角尺的短边紧靠⊙O于点A,长边与⊙O相切于点B,角尺的直角顶点为C,已知6cm,8cmACCB,则⊙O的半径为_____cm.【答案】253##183【解析】【分析】设圆的半径为rcm,连接OB、OA,过点A作AD⊥OB,垂足为D,利用勾股定理,在Rt△AOD中,得到r2=(r−6)2+82,求出r即可.【详解】解:连接OB、OA,过点A作AD⊥OB,垂足为D,如图所示:∵CB与O相切于点B,∴OBCB,∴90CBDBDAACB,∴四边形ACBD为矩形,∴8ADCB,6BDAC,设圆的半径为rcm,在Rt△AOD中,根据勾股定理可得:222OAODAD,即r2=(r−6)2+82,解得:253r,即O的半径为253cm.学科网(北京)股份有限公司故答案为:253.【点睛】本题主要考查了切线的性质,矩形的判定和性质,勾股定理,作出辅助线,构造直角三角形,利用勾股定理列出关于半径r的方程,是解题的关键.16.图1是光伏发电场景,其示意图如图2,EF为吸热塔,在地平线EG上的点B,B处各安装定日镜(介绍见图3).绕各中心点,AA旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处.已知1m,8m,83mABABEBEB,在点A观测点F的仰角为45.(1)点F的高度EF为______m.(2)设,DABDAB,则与的数量关系是_______.【答案】①.9②.7.5【解析】【分析】(1)过点A作AG⊥EF,垂足为G,证明四边形ABEG是矩形,解直角三角形AFG,确定FG,EG的长度即可.(2)根据光的反射原理画出光路图,清楚光线是平行线,运用解直角三角形思想,平行线的性质求解即可.【详解】(1)过点A作AG⊥EF,垂足为G.∵∠ABE=∠BEG=∠EGA=90°,∴四边形ABEG是矩形,学科网(北京)股份有限公司∴EG=AB=1m,AG=EB=8m,∵∠AFG=45°,∴FG=AG=EB=8m,∴EF=FG+EG=9(m).故答案为:9;(2)7.5.理由如下:∵∠ABE=∠BEG=∠EGA=90°,∴四边形ABEG是矩形,∴EG=AB=1m,AG=EB=83m,∴tan∠AFG=83=38AGFG,∴∠AFG=60°,∠FAG=30°,根据光的反射原理,不妨设∠FAN=2m,∠FAM=2n,∵光线是平行的,∴AN∥AM,∴∠GAN=∠GAM,∴45°+2m=30°+2n,解得n-m=7.5°,根据光路图,得90,90DABmDABn,∴9090mnnm,故7.5,故答案为:7.5.【点睛】本题考查了解直角三角形的应用,矩形的判定和性质,特殊角的三角函数值,光的反射原理,熟练掌握解直角三角形,灵活运用光的反射原理是解题的关键.三、解答题(本题有8小题,各小题都必须写出解答过程)17.计算:0(2022)2tan45|2|9.【答案】4【解析】

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功