精品解析:广西北部湾经济区2020年中考数学试题(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2020年广西北部湾经济区初中学业水平考试数学(考试时间:120分钟满分:120分)注意事项:1.本试卷分试题卷和答题卡两部分.答案一律填写在答题卡上,在试题卷上作答无效.2.答题前,请认真阅读答题卡上的注意事项.3.不能使用计算器.考试结束时,将本试题卷和答题卡一并交回.第I卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数是无理数的是()A.2B.1C.0D.5【答案】A【解析】【分析】根据无理数的三种形式求解即可.【详解】解:1,0,-5是有理数,2是无理数.故选:A.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.下列图形是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】由中心对称图形的定义逐一判断即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确,故选:D.【点睛】本题主要考查了中心对称图形的概念,关键是要寻找对称中心,图形旋转180°后与原图重合.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.388.910B.488.910C.58.8910D.68.8910【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】889000这个数据用科学记数法表示为58.8910.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列运算正确的是()A.22422xxxB.3232xxxC.322xxD.75222xxx【答案】D【解析】【分析】根据合并同类项法则,幂的乘方与积的乘方,同底数幂的乘法以及单项式除以单项式分别求出每个式子的值,再判断即可.【详解】A.22223xxx,故本选项不符合题意;B.325xxx?,故本选项不符合题意;C.326xx,故本选项不符合题意;D.75222xxx,正确.故选:D.【点睛】本题考查了合并同类项法则,幂的乘方与积的乘方,同底数幂的乘法以及单项式除以单项式等知识点,能正确求出每个式子的值是解答此题的关键.5.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量【答案】A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A.检测长征运载火箭的零部件质量情况,必须全面调查才能得到准确数据;B.了解全国中小学生课外阅读情况,量比较大,用抽样调查;C.调查某批次汽车的抗撞击能力,具有破坏性,用抽样调查;D.检测某城市的空气质量,不可能全面调查,用抽样调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.一元二次方程2210xx的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定【答案】B【解析】【分析】求出其根的判别式,然后根据根的判别式的正负情况即可作出判断.【详解】∵1a,2b,1c,∴2242411440bac△,∴方程有两个相等的实数根.故选:B.【点睛】本题考查了一元二次方程20axbxc(0a)的根的判别式24bac△:当>0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当<0,方程没有实数根.7.如图,在ABC中,,80BABCB,观察图中尺规作图的痕迹,则DCE的度数为()A.60B.65C.70D.75【答案】B【解析】【分析】先由等腰三角形的性质和三角形的内角和定理求出∠BCA,进而求得∠ACD,由作图痕迹可知CE为∠ACD的平分线,利用角平分线定义求解即可.【详解】∵在ABC中,,80BABCB,∴180180805022BACBooo,∴∠ACD=180°-∠ACB=180°-50°=130°,由作图痕迹可知CE为∠ACD的平分线,∴1652DCEACDo,故选:B.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、角平分线的定义和作法,熟练掌握等腰三角形的性质以及角平分线的尺规作图法是解答的关键.8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.16B.14C.13D.12【答案】C【解析】【分析】由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.【详解】∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是:21=63,故选:C.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,在ABC中,120BC,高60AD,正方形EFGH一边在BC上,点,EF分别在,ABAC上,AD交EF于点N,则AN的长为()A.15B.20C.25D.30【答案】B【解析】【分析】证明△AEF∽△ABC,根据相似三角形对应边上的高线的比等于相似比即可求得.【详解】解:∵四边形EFGH是正方形,∴EF∥BC,∴△AEF∽△ABC,∴EFANBCAD.设AN=x,则EF=FG=DN=60-x,∴6012060xx解得:x=20所以,AN=20.故选:B.【点睛】本题考查了正方形以及相似三角形的应用,注意数形结合的运用是解题关键.10.甲、乙两地相距600km,提速前动车的速度为/vkmh,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.600160031.2vvB.60060011.23vvC.600600201.2vvD.600600201.2vv【答案】A【解析】【分析】行驶路程都是600千米;提速前后行驶时间分别是:600600,1.2vv;因为提速后行车时间比提速前减少20min,所以,提速前的时间-提速后的时间=20min.【详解】根据提速前的时间-提速后的时间=20min,可得60060011.23vv即600160031.2vv故选:A【点睛】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.11.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kun,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【答案】C【解析】【分析】画出直角三角形,根据勾股定理即可得到结论.【详解】设OA=OB=AD=BC=x,过D作DE⊥AB于E,则DE=10,OE=12CD=1,AE= 1x.在Rt△ADE中,222AEDEAD,即222110xx,解得2?101x.故门的宽度(两扇门的和)AB为101寸.故选:C.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.12.如图,点,AB是直线yx上的两点,过,AB两点分别作x轴的平行线交双曲线10yxx于点,CD.若3ACBD,则223ODOC的值为()A.5B.32C.4D.23【答案】C【解析】【分析】设点A的坐标为(a,a),则点C的坐标为(1a,a),设点B的坐标为(b,b),则点D的坐标为(1b,b),根据AC=3BD即可得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【详解】∵点A、B在直线yx上,点C、D在双曲线1yx上,∴设点A的坐标为(a,a),则点C的坐标为(1a,a),设点B的坐标为(b,b),则点D的坐标为(1b,b),∴BD=1 bb,AC=1aa,∵AC=3BD,∴113?abab,两边同时平方,得22113abab,整理得:222211232abab,由勾股定理知:2221OCaa,2221ODbb,∴22232OCOD,∴2234ODOC.故选:C.【点睛】本题考查了反比例函数与勾股定理的综合应用,正确利用AC=3BD得到ab,的关系是解题的关键.第II卷二、填空题(每题3分,满分18分,将答案填在答题纸上)13.如图,数轴上所表示的x的取值范围为_____.【答案】﹣1<x≤3【解析】【分析】根据数轴上表示的不等式的解集即可得结论.【详解】解:观察数轴可知:x>﹣1,且x≤3,所以x的取值范围为﹣1<x≤3.故答案为﹣1<x≤3.【点睛】本题考查的是不等式的解集在数轴上的表示,注意数轴上的点是空心点还是实心点.14.计算:123_______.【答案】3【解析】123233315.某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以上”的频率(结果保留小数点后两位)0.750.830.780.790.800.80根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是_______(结果保留小数点后一位).【答案】0.8【解析】【分析】根据大量的实验结果稳定在0.8左右即可得出结论.【详解】∵从频率的波动情况可以发现频率稳定在0.8附近,∴这名运动员射击一次时“射中9环以上”的概率大约是0.8.故答案为:0.8.【点睛】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.16.如图,某校礼堂的座位分为四个区域,前区共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是_____.【答案】556个【解析】【分析】先计算前区共有多少个座位和前区最后一排有多少个座位,再计算后区一共有多少个座位即可得解.【详解】∵前区共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,∴前区共有座位数为:20+(20+1×2)+(20+2×2)+(20+3×2)+⋯⋯+(20+7×2)=8×20+(1+2+3+4+5+6+7)×2=216(个);∵前区最后一排的座位数为:20+7×2=34,∴后区的座位数为:34×10=340(个)因此,该礼堂的座位总数是216+340=556(个)故答案为:556个.【点睛】此题考查了找规律,根据题干得出每一排座位的个

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功