山东省潍坊市2021年中考数学真题一、单项选择题(共8小题,每小题3分,共24分.每小题四个选项只有一项正确.)1.下列各数的相反数中,最大的是()A.2B.1C.﹣1D.﹣2【答案】D【解析】【分析】根据相反数的概念先求得每个选项中对应的数据的相反数,然后再进行有理数的大小比较.【详解】解:2的相反数是﹣2,1的相反数是﹣1,﹣1的相反数是1,﹣2的相反数是2,∵2>1>﹣1>﹣2,故选:D.【点睛】本题考查相反数的概念及有理数的大小比较,只有符号不同的两个数叫做互为相反数,正数大于0,0大于负数,正数大于一切负数;两个负数比大小,绝对值大的反而小.2.如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是()A.15°B.30°C.45°D.60°【答案】B【解析】【分析】作CD⊥平面镜,垂足为G,根据EF⊥平面镜,可得CD//EF,根据水平线与底面所在直线平行,进而可得夹角α的度数.【详解】解:如图,作CD⊥平面镜,垂足为G,∵EF⊥平面镜,∴CD//EF,∴∠CDH=∠EFH=α,根据题意可知:AG∥DF,∴∠AGC=∠CDH=α,∴∠AGC=α,∵∠AGC12AGB1260°=30°,∴α=30°.故选:B.【点睛】本题考查了入射角等于反射角问题,解决本题的关键是法线CG平分∠AGB.3.第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101527000用科学记数法(精确到十万位)()A.1.02×108B.0.102×109C.1.015×108D.0.1015×109【答案】C【解析】【分析】先用四舍五入法精确到十万位,再按科学记数法的形式和要求改写即可.【详解】解:81015270001015000001.01510.故选:C【点睛】本题考查了近似数和科学记数法的知识点,取近似数是本题的基础,熟知科学记数法的形式和要求是解题的关键.4.若菱形两条对角线的长度是方程x2﹣6x+8=0的两根,则该菱形的边长为()A.5B.4C.25D.5【答案】A【解析】【分析】先求出方程的解,即可得到42ACBD,,根据菱形的性质求出AO和DO,根据勾股定理求出AD即可.【详解】解:解方程2680xx,得1224xx,,即42ACBD,,∵四边形ABCD是菱形,∴9021AODAOCOBODO,,,由勾股定理得2222215ADAODO,即菱形的边长为5,故选:A.【点睛】本题考查了解一元二次方程和菱形的性质,正确求出方程的根是解题的关键.5.如图,某机器零件的三视图中,既是轴对称图形,又是中心对称图形的是()A.主视图B.左视图C.俯视图D.不存在【答案】C【解析】【分析】根据该几何体的三视图,结合轴对称图形的定义:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形及中心对称的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形称为中心对称图形进行判断即可.【详解】解:该几何体的三视图如下:三视图中既是轴对称图形,又是中心对称图形的是俯视图,故选:C.【点睛】本题考查简单几何体的三视图,中心对称、轴对称,理解视图的意义,掌握简单几何体三视图的画法以及轴对称、中心对称的意义是正确判断的前提.6.不等式组2111313412xxxx的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】分别求出每一个不等式的解集,再将解集表示在同一数轴上即可得到答案.【详解】解:2111313412xxxx①②解不等式①,得:x≥-1,解不等式②,得:x<2,将不等式的解集表示在同一数轴上:所以不等式组的解集为-1≤x<2,故选:D.【点睛】本题考查的是解一元一次不等式组,关键是正确求出每一个不等式解集,并会将解集表示在同一数轴上.7.如图为2021年第一季度中国工程机械出口额TOP10国家的相关数据(同比增速是指相对于2020年第一季度出口额的增长率),下列说法正确的是()A.对10个国家出口额的中位数是26201万美元B.对印度尼西亚的出口额比去年同期减少C.去年同期对日本的出口额小于对俄罗斯联邦的出口额D.出口额同比增速中,对美国的增速最快【答案】A【解析】【分析】A、根据中位数的定义判断即可;B、根据折线图即可判断出对印度尼西亚的出口额的增速;C、分别求出去年同期对日本和俄罗斯联邦的出口额即可判断;D、根据折线图即可判断.【详解】解:A、将这组数据按从小到大的顺序排列为:19677,19791,21126,24268,25855,26547,29285,35581,39513,67366,位于中间的两个数分别是25855,26547,所以中位数是2585526547=262012万美元,选项正确,符合题意;B、根据折线图可知,对印度尼西亚的出口额比去年同期增长27.3%,选项说法错误,不符合题意;C、去年同期对日本的出口额为:3558127078.4131.4%,对俄罗斯联邦的出口额为:3951323803.0166.0%,选项错误,不符合题意;D、根据折线图可知,出口额同比增速中,对越南的增速最快,选项错误,不符合题意.故选:A.【点睛】此题考查了中位数的概念和折线统计图和柱状图,解题的关键是正确分析出图中的数据.8.记实数x1,x2,…,xn中的最小数为min|x1,x2,…,xn|=﹣1,则函数y=min|2x﹣1,x,4﹣x|的图象大致为()A.B.C.D.【答案】B【解析】【分析】分别画出函数,21,4yxyxyx的图像,然后根据min|x1,x2,…,xn|=﹣1即可求得.【详解】如图所示,分别画出函数,21,4yxyxyx的图像,由图像可得,21,1,1242xxyxxxx<>,故选:B.【点睛】此题考查了一次函数图像的性质,解题的关键是由题意分析出各函数之间的关系.二、多项选择题(共4小题,每小题3分,共12分.每小题四个选项有多项正确,全部选对得3分,部分选对得2分,有选错的即得0分.)9.下列运算正确的是.A.221124aaaB.211aaC.33aabbD.623【答案】A【解析】【分析】根据完全平方公式、负数指数幂、分式的化简、根式的化简分别计算解答即可.【详解】解:A、221124aaa,选项运算正确;B、221211aaa,选项运算错误;C、33ab是最简分式,选项运算错误;D、623,选项运算错误;故选:A.【点睛】此题综合考查了代数式的运算,关键是掌握代数式运算各种法则解答.10.如图,在直角坐标系中,点A是函数y=﹣x图象上的动点,1为半径作⊙A.已知点B(﹣4,0),连接AB,当⊙A与两坐标轴同时相切时,tan∠ABO的值可能为_______.A.3B.13C.5D.15【答案】BD【解析】【分析】根据“⊙A与两坐标轴同时相切”分为⊙A在第二象限,第四象限两种情况进行解答.【详解】解:如图,当⊙A在第二象限,与两坐标轴同时相切时,在Rt△ABM中,AM=1=OM,BM=BO﹣OM=4﹣1=3,∴tan∠ABO13AMBM;当⊙A在第四象限,与两坐标轴同时相切时,在Rt△ABM中,AM=1=OM,BM=BO+OM=4+1=5,∴tan∠ABO15AMBM;故答案为:B或D.【点睛】本题考查切线的性质和判定,解直角三角形,根据不同情况画出相应的图形,利用直角三角形的边角关系求出答案是解决问题的前提.11.古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B,BO为半径作圆孤分别交⊙O于C,D两点,DO并延长分交⊙O于点E,F;④顺次连接BC,FA,AE,DB,得到六边形AFCBDE.连接AD,交于点G,则下列结论错误的是.A.△AOE的内心与外心都是点GB.∠FGA=∠FOAC.点G是线段EF的三等分点D.EF=2AF【答案】D【解析】【分析】证明△AOE是等边三角形,EF⊥OA,AD⊥OE,可判断A;.证明∠AGF=∠AOF=60°,可判断B;证明FG=2GE,可判断C;证明EF=3AF,可判断D.【详解】解:如图,在正六边形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等边三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四边形AEOF,四边形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的内心与外心都是点G,故A正确,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正确,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴点G是线段EF的三等分点,故C正确,∵AF=AE,∠FAE=120°,∴EF=3AF,故D错误,故答案为:D.【点睛】本题考查作图-复杂作图,等边三角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF,四边形AODE都是菱形.12.在直角坐标系中,若三点A(1,﹣2),B(2,﹣2),C(2,0)中恰有两点在抛物线y=ax2+bx﹣2(a>0且a,b均为常数)的图象上,则下列结论正确是().A.抛物线的对称轴是直线12xB.抛物线与x轴的交点坐标是(﹣12,0)和(2,0)C.当t>94时,关于x的一元二次方程ax2+bx﹣2=t有两个不相等的实数根D.若P(m,n)和Q(m+4,h)都是抛物线上的点且n<0,则0h.【答案】ACD【解析】【分析】利用待定系数法将各点坐标两两组合代入22yaxbx,求得抛物线解析式为2yxx2,再根据对称轴直线2bxa求解即可得到A选项是正确答案,由抛物线解析式为2yxx2,令0y,求解即可得到抛物线与x轴的交点坐标(-1,0)和(2,0),从而判断出B选项不正确,令关于x的一元二次方程220axbxt的根的判别式当0,解得94t,从而得到C选项正确,根据抛物线图象的性质由0n,推出346m,从而推出0h,得到D选项正确.【详解】当抛物线图象经过点A和点B时,将A(1,-2)和B(2,-2)分别代入22yaxbx,得224222abab,解得00ab,不符合题意,当抛物线图象经过点B和点C时,将B(2,-2)和C(2,0)分别代入22yaxbx,得42224220abab,此时无解,当抛物线图象经过点A和点C时,将A(1,-2)和C(2,0)分别代入22yaxbx得224220abab,解得11ab,因此,抛物线经过点A和点C,其解析式为2yxx2,抛物线的对称轴为直线11212x,故A选项正确,因为2221yxxxx,所以12x21x,抛物线与x轴的交点坐标是(-1,0)和(2,0),故B选项不正确,由22axbxt得220axbxt,方程根的判别式242bat当1a,1b时,94t,当0时,即940t,解得94t,此时关于x的一元二次方程22axbxt有两个不相等的实数根,故C选项正确,因为抛物线2yxx2与x轴交于点(-1,0)和(2,0),且其图象开口向上,若P(m,n)和Q(m+4,h)都是抛物线上2yxx2的点,且n0,得12m,又得346m,所以h>0,故D选项正确.0h故选ACD.【点睛】本题考查抛物线与x轴的交