山东省淄博市2018年中考数学真题试题(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1山东省淄博市2018年中考数学真题试题一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)计算的结果是()A.0B.1C.﹣1D.2.(4分)下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意3.(4分)下列图形中,不是轴对称图形的是()A.B.C.D.4.(4分)若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.95.(4分)与最接近的整数是()A.5B.6C.7D.86.(4分)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A.B.C.D.7.(4分)化简的结果为()A.B.a﹣1C.aD.18.(4分)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3B.2C.1D.029.(4分)如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()A.2πB.C.D.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4B.6C.D.812.(4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.二、填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)313.(4分)如图,直线a∥b,若∠1=140°,则∠2=度.14.(4分)分解因式:2x3﹣6x2+4x=.15.(4分)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为.17.(4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.19.(5分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.420.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表:时间(小时)678910人数58121510(1)写出这50名学生读书时间的众数、中位数、平均数;(2)根据上述表格补全下面的条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书活动,其中被抽到学生的读书时间不少于9小时的概率是多少?21.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.22.(8分)如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求5其面积;若不存在,说明理由.23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.24.(9分)如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.67参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)计算的结果是()A.0B.1C.﹣1D.【考点】1A:有理数的减法;15:绝对值.【分析】先计算绝对值,再计算减法即可得.【解答】解:=﹣=0,故选:A.【点评】本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.2.(4分)下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意【考点】X1:随机事件.【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.【解答】解:A、水能载舟,亦能覆舟,是必然事件,故此选项错误;B、只手遮天,偷天换日,是不可能事件,故此选项错误;C、瓜熟蒂落,水到渠成,是必然事件,故此选项错误;D、心想事成,万事如意,是随机事件,故此选项正确.故选:D.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.3.(4分)下列图形中,不是轴对称图形的是()A.B.C.D.8【考点】P3:轴对称图形.【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【解答】解:根据轴对称图形的概念,可知:选项C中的图形不是轴对称图形.故选:C.【点评】本题考查了轴对称图形,牢记轴对称图形的概念是解题的关键.4.(4分)若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.9【考点】35:合并同类项;42:单项式.【分析】首先可判断单项式am﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.【解答】解:∵单项式am﹣1b2与的和仍是单项式,∴单项式am﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴nm=8.故选:C.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.5.(4分)与最接近的整数是()A.5B.6C.7D.8【考点】2B:估算无理数的大小;27:实数.【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.9【点评】此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.6.(4分)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A.B.C.D.【考点】T9:解直角三角形的应用﹣坡度坡角问题;T6:计算器—三角函数.【分析】先利用正弦的定义得到sinA=0.15,然后利用计算器求锐角α.【解答】解:sinA===0.15,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选:A.【点评】本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.(4分)化简的结果为()A.B.a﹣1C.aD.1【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+10==a﹣1故选:B.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.(4分)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3B.2C.1D.0【考点】O2:推理与论证.【分析】四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;由此进行分析即可.【解答】解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.故选:D.【点评】此题是推理论证题目,解答此题的关键是先根据题意,通过分析,进而得出两种可能性,继而分析即可.9.(4分)如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()A.2πB.C.D.【考点】MN:弧长的计算;M5:圆周角定理.【分析】先连接CO,依据∠BAC=50°,AO=CO=3,即可得到∠AOC=80°,进而得出劣弧AC的长为=.【解答】解:如图,连接CO,11∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC的长为=,故选:D.【点评】本题考查了圆周角定理,弧长的计算,熟记弧长的公式是解题的关键.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x的分式方程.【解答】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.1211.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4B.6C.D.8【考点】KO:含30度角的直角三角形;JA:平行线的性质;KJ:等腰三角形的判定与性质.【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMB=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.【点评】本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.(4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.【考点】R2

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功