陕西省2018年中考数学真题试题(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1陕西省2018年中考数学真题试题一、选择题:(本大题共10题,每题3分,满分30分)1.-的倒数是A.B.-C.D.-【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵=1,∴-的倒数是-,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2.如图,是一个几何体的表面展开图,则该几何体是A.正方体B.长方体C.三棱柱D.四棱锥【答案】C【解析】根据表面展开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。【详解】观察可知图中有一对全等的三角形,有三个长方形,所以此几何体为三棱柱,故选C【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图特点是解决此类问题的关键.3.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有2A.1个B.2个C.3个D.4个【答案】D【解析】【分析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠1互补的角的个数.【详解】如图,∵l1∥l2,l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2、∠3、∠4、∠5共4个,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为A.-B.C.-2D.2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),3∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-,故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.5.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-4【答案】B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A.a2·a2=a4,故A选项错误;B.(-a2)3=-a6,正确;C.3a2-6a2=-3a2,故C选项错误;D.(a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.6.如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A.B.2C.D.34【答案】C【解析】【分析】由已知可知△ADC是等腰直角三角形,根据斜边AC=8可得AD=4,在Rt△ABD中,由∠B=60°,可得BD==,再由BE平分∠ABC,可得∠EBD=30°,从而可求得DE长,再根据AE=AD-DE即可【详解】∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=8,∴AD=4,在Rt△ABD中,∠B=60°,∴BD===,∵BE平分∠ABC,∴∠EBD=30°,∴DE=BD•tan30°==,∴AE=AD-DE=,故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.7.若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为A.(-2,0)B.(2,0)C.(-6,0)D.(6,0)【答案】B【解析】【分析】根据l1与l2关于x轴对称,可知l2必经过(0,-4),l1必经过点(3,-2),然后根据待定系数法分别求出l1、l2的解析式后,再联立解方程组即可得.【详解】由题意可知l1经过点(3,-2),(0,4),设l1的解析式为y=kx+b,则有,解得,所以l1的解析式为y=-2x+4,由题意可知由题意可知l2经过点(3,2),(0,-4),设l1的解析式为y=mx+n,则有,解得,所以l2的解析式为y=2x-4,联立,解得:,5所以交点坐标为(2,0),故选B.【点睛】本题考查了两直线相交或平行问题,关于x轴对称的点的坐标特征,待定系数法等,熟练应用相关知识解题是关键.8.如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是A.AB=EFB.AB=2EFC.AB=EFD.AB=EF【答案】D【解析】【分析】连接AC、BD交于点O,由菱形的性质可得OA=AC,OB=BD,AC⊥BD,由中位线定理可得EH=BD,EF=AC,根据EH=2EF,可得OA=EF,OB=2EF,在Rt△AOB中,根据勾股定理即可求得AB=EF,由此即可得到答案.【详解】连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH=BD,EF=AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB==EF,故选D.6【点睛】本题考查了菱形的性质、三角形中位线定理、勾股定理等,正确添加辅助线是解决问题的关键.9.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为A.15°B.35°C.25°D.45°【答案】A【详解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.10.对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先由题意得到关于a的不等式,解不等式求出a的取值范围,然后再确定抛物线的顶点坐标的取值范围,据此即可得出答案.【详解】由题意得:a+(2a-1)+a-30,解得:a1,∴2a-10,∴0,,7∴抛物线的顶点在第三象限,故选C.【点睛】本题考查了抛物线的顶点坐标公式,熟知抛物线的顶点坐标公式是解题的关键.二、填空题:(本大题共4题,每题3分,满分12分)11.比较大小:3_________(填,或=).【答案】【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,910,∴3,故答案为:.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.12.如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为________【答案】72°【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键13.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______【答案】【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=,由题意得:m2=2m×(-1),8解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=,故答案为:y=.【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.14.点O是平行四边形ABCD的对称中心,AD>AB,E、F分别是AB边上的点,且EF=AB;G、H分别是BC边上的点,且GH=BC;若S1,S2分别表示∆EOF和∆GOH的面积,则S1,S2之间的等量关系是______________【答案】2S1=3S2【解析】【分析】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,根据点O是平行四边形ABCD的对称中心以及平行四边形的面积公式可得AB•ON=BC•OM,再根据S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,则可得到答案.【详解】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,∵点O是平行四边形ABCD的对称中心,∴S平行四边形ABCD=AB•2ON,S平行四边形ABCD=BC•2OM,∴AB•ON=BC•OM,∵S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,∴S1=AB•ON,S2=BC•OM,∴2S1=3S2,故答案为:2S1=3S2.【点睛】本题考查了平行四边形的面积,中心对称的性质,正确添加辅助线、准确表示出图形面积是解题的关键.9三、解答题(共11小题,计78分.解答应写出过程)15.计算:(-)×(-)+|-1|+(5-2π)0【答案】【解析】【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.【详解】(-)×(-)+|-1|+(5-2π)0=3+-1+1=4.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.16.化简:【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算即可得.【详解】===.【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的顺序是解题的关键.17.如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)【答案】作图见解析.【解析】【分析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点.10【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.18.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.【详解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在∆ABH和∆DCG中,,∴∆ABH≌∆DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.19.对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表11依据以上统计信息,解答下列问题:(1)求得m=,n=;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.【答案】(1)30;19

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功