台湾省2018年中考数学真题试题(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1台湾省2018年中考数学真题试题第一部分:选择题(第1~26题)1.(3分)下列选项中的图形有一个为轴对称图形,判断此形为何?()A.B.C.D.2.(3分)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=cB.a=c,b≠cC.a≠c,b=cD.a≠c,b≠c3.(3分)已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a为一数,求a的值为何?()A.﹣12B.﹣4C.4D.124.(3分)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A.16元B.27元C.30元D.48元5.(3分)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24B.0C.﹣4D.﹣86.(3分)已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋中每颗球被抽出的机会相等,则下列叙述何者正确?()甲袋乙袋红球2颗4颗黄球2颗2颗绿球1颗4颗总计5颗10颗A.阿冯抽出红球的机率比小潘抽出红球的机率大B.阿冯抽出红球的机率比小潘抽出红球的机率小C.阿冯抽出黄球的机率比小潘抽出黄球的机率大2D.阿冯抽出黄球的机率比小潘抽出黄球的机率小7.(3分)算式×(﹣1)之值为何?()A.B.C.2D.18.(3分)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?()A.﹣25B.﹣19C.5D.179.(3分)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.B.C.D.10.(3分)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000B.321000C.329000D.34200011.(3分)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115B.120C.125D.130312.(3分)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1D.x﹣113.(3分)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112B.121C.134D.14314.(3分)如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A.174B.176C.178D.18015.(3分)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()4A.B.C.D.16.(3分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20B.25C.30D.3517.(3分)已知a=3.1×10﹣4,b=5.2×10﹣8,判断下列关于a﹣b之值的叙述何者正确?()A.比1大B.介于0、1之间C.介于﹣1、0之间D.比﹣1小18.(3分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确19.(3分)已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()5A.a>b,c>dB.a>b,c<dC.a<b,c>dD.a<b,c<d20.(3分)如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?()A.2B.4C.2D.421.(3分)已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1B.9C.16D.2422.(3分)如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?()A.∠PBD>∠PACB.∠PBD<∠PACC.∠PBD>∠PDBD.∠PBD<∠PDB23.(3分)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐6C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多24.(3分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()A.2:1B.3:2C.5:2D.9:425.(3分)某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360B.480C.600D.72026.(3分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8D.﹣7第二部分:非选择题(第1~2题)27.一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱7子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:次数第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次号码13442141若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:(1)请求出第1次至第8次得分的平均数.(2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由.28.嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1,R2,R3,其行经位置如图与表所示:路径编号图例行径位置第一条路径R1_A→C→D→B第二条路径R2…A→E→D→F→B第三条路径R3▂A→G→B已知A、B、C、D、E、F、G七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.8参考答案与试题解析第一部分:选择题(第1~26题)1.(3分)下列选项中的图形有一个为轴对称图形,判断此形为何?()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,对称轴为两宽的中点的连线所在的直线,故本选项正确.故选:D.【点评】本题考查轴对称图形,注意掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=cB.a=c,b≠cC.a≠c,b=cD.a≠c,b≠c【分析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可.【解答】解:∵a=(﹣)﹣=﹣﹣,b=﹣(﹣)=﹣+,c=﹣﹣,∴a=c,b≠c.故选:B.【点评】此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:有理数减法法则:减去一个数,等于加上这个数的相反数.3.(3分)已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a为一数,求a的值为何?()9A.﹣12B.﹣4C.4D.12【分析】利用待定系数法即可解决问题.【解答】解:∵次函数y=3x+a的图形通过点(0,﹣4),∴﹣4=0×3+a,∴a=﹣4,故选:B.【点评】本题考查一次函数的应用、待定系数法等知识,熟练掌握待定系数法是解题的关键,属于中考基础题.4.(3分)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A.16元B.27元C.30元D.48元【分析】直接利用小绵购买笔记本的花费为36元,得出笔记本的单价,进而得出小勤购买笔记本的花费.【解答】解:∵某文具店贩售的笔记本每本售价均相等且超过10元,小绵购买笔记本的花费为36元,∴笔记本的单价为:36÷3=12(元)或36÷2=18(元)或36元;故小勤购买笔记本的花费为:12或18或36的倍数,只有选项48符合题意.故选:D.【点评】此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.5.(3分)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24B.0C.﹣4D.﹣8【分析】利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案.【解答】解:,①﹣②×3,得:﹣2x=﹣16,解得:x=8,10将x=8代入②,得:24﹣y=8,解得:y=16,即a=8、b=16,则a+b=24,故选:A.【点评】本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.6.(3分)已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋中每颗球被抽出的机会相等,则下列叙述何者正确?()甲袋乙袋红球2颗4颗黄球2颗2颗绿球1颗4颗总计5颗10颗A.阿冯抽出红球的机率比小潘抽出红球的机率大B.阿冯抽出红球的机率比小潘抽出红球的机率小C.阿冯抽出黄球的机率比小潘抽出黄球的机率大D.阿冯抽出黄球的机率比小潘抽出黄球的机率小【分析】根据概率公式分别计算出两人抽出红球、黄球的概率,比较大小即可得.【解答】解:∵阿冯抽出红球

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功