【中小学教辅资源店微信:mlxt2022】专题19概率一.选择题1.(2022·湖北武汉)彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件【答案】D【分析】直接根据随机事件的概念即可得出结论.【详解】购买一张彩票,结果可能为中奖,也可能为不中奖,中奖与否是随机的,即这个事件为随机事件.故选:D.【点睛】本题考查了随机事件的概念,解题的关键是熟练掌握随机事件发生的条件,能够灵活作出判断.2.(2022·湖南邵阳)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是()A.1B.34C.12D.14【答案】D【分析】由列举法可得:掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,然后利用概率公式求解即可求得答案.【详解】∵掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,∴P(正,正)=14.故选∶D.【点睛】此题考查了列举法求概率,解题的关键是知道概率=所求情况数与总情况数之比.3.(2022·四川乐山)一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是()A.14B.13C.23D.34【答案】A【分析】由于每个球被取出的机会是均等的,故用概率公式计算即可.【详解】解:根据题意,一个布袋中放着6个黑球和18个红球,根据概率计算公式,从布袋中任取1个球,取出黑球的概率是616184P.故选:A.【点睛】本题主要考查了概率公式的知识,解题关键是熟记概率公式.4.(2022·湖南衡阳)下列说法正确的是()【中小学教辅资源店微信:mlxt2022】A.“任意画一个三角形,其内角和为180”是必然事件B.调查全国中学生的视力情况,适合采用普查的方式C.抽样调查的样本容量越小,对总体的估计就越准确D.十字路口的交通信号灯有红、黄、绿三种颜色,所以开车经过十字路口时,恰好遇到黄灯的概率是13【答案】A【分析】由三角形的内角和定理可判断A,由抽样调查与普查的含义可判断B,C,由简单随机事件的概率可判断D,从而可得答案.【详解】解:“任意画一个三角形,其内角和为180”是必然事件,表述正确,故A符合题意;调查全国中学生的视力情况,适合采用抽样调查的方式,故B不符合题意;抽样调查的样本容量越小,对总体的估计就越不准确,故C不符合题意;十字路口的交通信号灯有红、黄、绿三种颜色,所以开车经过十字路口时,恰好遇到黄灯的概率不是13,与三种灯的闪烁时间相关,故D不符合题意;故选A【点睛】本题考查的是必然事件的含义,调查方式的选择,简单随机事件的概率,三角形的内角和定理的含义,掌握“以上基础知识”是解本题的关键.5.(2022·江苏扬州)下列成语所描述的事件属于不可能事件的是()A.水落石出B.水涨船高C.水滴石穿D.水中捞月【答案】D【分析】根据不可能事件的定义:在一定条件下一定不会发生的事件是不可能事件,进行逐一判断即可【详解】解:A、水落石出是必然事件,不符合题意;B、水涨船高是必然事件,不符合题意;C、水滴石穿是必然事件,不符合题意;D、水中捞月是不可能事件,符合题意;故选D【点睛】本题主要考查了不可能事件,熟知不可能事件的定义是解题的关键.6.(2022·湖南怀化)从下列一组数﹣2,π,﹣12,﹣0.12,0,﹣5中随机抽取一个数,这个数是负数的概率为()A.56B.23C.12D.13【答案】B【分析】找出题目给的数中的负数,用负数的个数除以总的个数,求出概率即可.【中小学教辅资源店微信:mlxt2022】【详解】∵数﹣2,π,﹣12,﹣0.12,0,﹣5中,一共有6个数,其中﹣2,﹣12,﹣0.12,﹣5为负数,有4个,∴这个数是负数的概率为4263P,故答案选:B.【点睛】本题考查负数的认识,概率计算公式,正确找出负数的个数是解答本题的关键.7.(2022·浙江绍兴)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是()A.34B.12C.13D.14【答案】A【分析】根据概率公式计算,即可求解.【详解】解:根据题意得:从袋中任意摸出一个球为红球的概率是33314.故选:A【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.8.(2022·湖北武汉)班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是()A.14B.13C.12D.23【答案】C【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:【中小学教辅资源店微信:mlxt2022】由上表可知共有12中可能,满足题意的情况数为6种则A,B两位同学座位相邻的概率是61122.故选C.【点睛】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.9.(2022·浙江温州)9张背面相同的卡片,正面分别写有不同的从1到9的一个自然数,现将卡片背面朝上,从中任意抽出一张,正面的数是偶数的概率为()A.19B.29C.49D.59【答案】C【分析】利用列举法列出全部可能情况,从中找出是偶数的情况,根据概率公式P(A)=事件包含的结果/总体可能的结果计算即可.【详解】解:从9张卡片中任意抽出一张,正面的数有1~9共9种可能,其中为偶数的情况有2、4、6、8共4种,所以正面的数是偶数的概率P=49,故选:C.【点睛】本题考查了概率,需熟练运用列举法进行分析,会使用列表法、树状图法求概率.10.(2022·四川德阳)下列事件中,属于必然事件的是()A.抛掷硬币时,正面朝上B.明天太阳从东方升起C.经过红绿灯路口,遇到红灯D.玩“石头、剪刀、布”游戏时,对方出“剪刀”【答案】B【分析】根据随机事件、必然事件的概念即可作答.【详解】A.抛硬币时,正面有可能朝上也有可能朝下,故正面朝上是随机事件;B.太阳从东方升起是固定的自然规律,是不变的,故此事件是必然事件;C.经过路口,有可能出现红灯,也有可能出现绿灯、黄灯,故遇到红灯是随机事件;D.对方有可能出“剪刀”,也有可能出“石头”、“布”,出现对方出“剪刀”随机事假.故选:B.【点睛】本题考查了随机事件、必然事件的概念,充分理解随机事件的概念是解答本题的关键.11.(2022·浙江丽水)老师从甲、乙,丙、丁四位同学中任选一人去学校劳动基地浇水,选中甲同学的概率是()【中小学教辅资源店微信:mlxt2022】A.15B.14C.13D.34【答案】B【分析】根据随机事件概率大小的求法,找到全部情况的总数以及符合条件的情况,两者的比值就是其发生的概率的大小.【详解】解:根据题意可得:从甲、乙,丙、丁四位同学中任选一人去学校劳动基地浇水,总数是4个人,符合情况的只有甲一个人,所以概率是P=14,故选:B.【点睛】本题考查概率的求法与运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12.(2022·江苏苏州)如图,在56的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A.12B.24C.1060D.560【答案】A【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:由图可知,总面积为:5×6=30,223110OB,∴阴影部分面积为:90105=3602,∴飞镖击中扇形OAB(阴影部分)的概率是52=3012,故选:A.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率.【中小学教辅资源店微信:mlxt2022】13.(2022·湖北宜昌)某校团支部组织部分共青团员开展学雷锋志愿者服务活动,每个志愿者都可以从以下三个项目中任选一项参加:①敬老院做义工;②文化广场地面保洁;③路口文明岗值勤.则小明和小慧选择参加同一项目的概率是()A.13B.23C.19D.29【答案】A【分析】先根据题意画出树状图,然后再根据概率的计算公式进行计算即可.【详解】解:根据题意画出树状图,如图所示:∵共有9种等可能的情况,其中小明和小慧选择参加同一项目的有3种情况,∴小明和小慧选择参加同一项目的概率为3193P,故A正确.故选:A.【点睛】本题主要考查了概率公式、画树状图或列表格求概率,根据题意画出树状图或列出表格,是解题的关键.14.(2022·湖南常德)从1,2,3,4,5这五个数中任选两个数,其和为偶数的概率为()A.15B.25C.35D.45【答案】B【分析】根据列表法求概率即可求解.【详解】解:列表如下,【中小学教辅资源店微信:mlxt2022】共有20种等可能结果,其中和为偶数的有8种,则其和为偶数的概率为82025故选B【点睛】本题考查了列表法求概率,掌握求概率的方法是解题的关键.二、填空题15.(2022·浙江台州)将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)掷一次,朝上一面点数是1的概率为________.【答案】16【分析】使用简单事件概率求解公式即可:事件发生总数比总事件总数.【详解】掷骰子一次共可能出现6种情况,分别是向上点数是:1、2、3、4、5、6,点数1向上只有一种情况,则朝上一面点数是1的概率P=16.故答案为:16【点睛】本题考查了简单事件概率求解,熟练掌握简单事件概率求解的公式是解题的关键.16.(2022·湖南娄底)黑色袋子中装有质地均匀,大小相同的编号为1~15号台球共15个,搅拌均匀后,从袋中随机摸出1个球,则摸出的球编号为偶数的概率是_______.【答案】715【分析】根据概率公式求解即可.【详解】解:由题意可知:编号为1~15号台球中偶数球的个数为7个,∴摸出的球编号为偶数的概率7=15,故答案为:715.【点睛】本题考查概率公式,解题的关键是掌握利用概率的定义求事件概率的方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的n种结果,那么事件A发生的概率()mPAn.17.(2022·天津)不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从【中小学教辅资源店微信:mlxt2022】袋子中随机取出1个球,则它是绿球的概率是___________.【答案】79【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有9个小球,其中绿球有7个,∴摸出一个球是绿球的概率是79,故答案为:79.【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.18.(2022·湖南株洲)某产品生产企业开展有奖促销活动,将每6件产品装成一箱,且使得每箱中都有2件能中奖.若从其中一箱中随机抽取1件产品,则能中奖的概率是_________.(用最简分数表示)【答案】13【分析】根据题意计算中奖概率即可;【详解】解:∵每一箱都有6件产品,且每箱中都有2件能中奖,∴P(从其中一箱中随机抽取1件产品中奖)=2163,故答案为:13.【点睛】本题主要考查简单概率的计算,正确理解题意是解本题的关键.19.(2022·浙江杭州)有5张仅有编号不同的卡片,编号分别是1,2,3,