第1页(共18页)2018年湖南省永州市中考数学试卷一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.(4分)﹣2018的相反数是()A.2018B.﹣2018C.D.﹣2.(4分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.3.(4分)函数y=中自变量x的取值范围是()A.x≥3B.x<3C.x≠3D.x=34.(4分)如图几何体的主视图是()A.B.C.D.5.(4分)下列运算正确的是()A.m2+2m3=3m5B.m2•m3=m6C.(﹣m)3=﹣m3D.(mn)3=mn36.(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48B.44,45C.45,51D.52,537.(4分)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形第2页(共18页)C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半8.(4分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2B.4C.6D.89.(4分)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.10.(4分)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)截止2017年年底,我国60岁以上老龄人口达2.4亿,占总人口比重达17.3%.将2.4亿用科学记数法表示为.12.(4分)因式分解:x2﹣1=.13.(4分)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=.第3页(共18页)14.(4分)化简:(1+)÷=.15.(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.16.(4分)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.17.(4分)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=.18.(4分)现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有种.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.(8分)计算:2﹣1﹣sin60°+|1﹣|.20.(8分)解不等式组,并把解集在数轴上表示出来.21.(8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”第4页(共18页)投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.22.(10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.23.(10分)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人第5页(共18页)数.24.(10分)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.25.(12分)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.第6页(共18页)26.(12分)如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.第7页(共18页)2018年湖南省永州市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每个小题只有一个正确选项,每小题4分,共40分1.【解答】解:﹣2018的相反数是2018.故选:A.2.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.3.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:C.4.【解答】解:由图可得,几何体的主视图是:故选:B.第8页(共18页)5.【解答】解:A、m2与2m3不是同类项,不能合并,此选项错误;B、m2•m3=m5,此选项错误;C、(﹣m)3=﹣m3,此选项正确;D、(mn)3=m3n3,此选项错误;故选:C.6.【解答】解:数据从小到大排列为:44,45,45,51,52,54,所以这组数据的众数为45,中位数为(45+51)=48.故选:A.7.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项为假命题;B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;C、任意多边形的外角和为360°,所以C选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.故选:D.8.【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选:B.9.第9页(共18页)【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.10.【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.二、填空题(本大题共8个小题,每小题4分,共32分)11.【解答】解:2.4亿=2.4×108.故答案为:2.4×10812.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).13.第10页(共18页)【解答】解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.14.【解答】解:(1+)÷===,故答案为:.15.【解答】解:由题意可得,=0.03,解得,n=100.故估计n大约是100.故答案为:100.16.【解答】解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.第11页(共18页)17.【解答】解:log216=log2(2•2•2•2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.18.【解答】解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;故答案为4.三、解答题(本大题共8个小题,解答题要求写出证明步骤或解答过程)19.【解答】解:原式=﹣×+2=1.20.【解答】解:,解不等式①,可得x<3,解不等式②,可得x>﹣1,∴不等式组的解集为﹣1<x<3,在数轴上表示出来为:第12页(共18页)21.【解答】解:(1)参观的学生总人数为12÷30%=40(人);(2)喜欢“瑶文化”的学生占参观总学生数的百分比为×100%=15%;(3)“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:∵共有12种等可能的结果,甲同学被选中的有6种情况,∴甲同学被选中的概率是:=.故答案为:40;15%;.22.【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC中,∠ACB=90°,E为AB的中点,第13页(共18页)∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形.(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AB=3,AC=BC=3,∴S平行四边形BCFD=3×=9.23.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,依题意得:,解得,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.第14页(共18页)24.【解答】证明:(1)延长CD交⊙O于G,如图,∵CD⊥AB,∴=,∵=,∴=,∴∠CBE=∠GCB,∴CF=BF;(2)连接OC交BE于H,如图,∵=,∴OC⊥BE,在Rt△OBH中,cos∠OBH==,∴BH=×6=,∴OH==,∵==,==,∴=,而∠HOB=∠COM,∴△OHB∽△OCM,∴∠OCM=∠OHB=90°,∴OC⊥CM,∴直线CM是⊙O的切线.第15页(共18