初二数学因式分解教案【优秀5篇】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!初二数学因式分解教案【优秀5篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“初二数学因式分解教案【优秀5篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!因式分解教案【第一篇】15.1.1整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示△ABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为?c?h.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、ch、是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,参考资料,少熬夜!即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.的项分别是ab、-.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.参考资料,少熬夜!Ⅲ.随堂练习1.课本P162练习Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。教学重点:会进行整式加减的运算,并能说明其中的算理。教学难点:正确地去括号、合并同类项,及符号的正确处理。教学过程:一、课前练习:1、填空:整式包括和2、单项式的系数是、次数是3、多项式是次项式,其中二次项系数是一次项是,常数项是4、下列各式,是同类项的一组是()(A)与(B)与(C)与5、去括号后合并同类项:二、探索练习:1、如果用a、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为交换这个两位数的。十位数字和个位数字后得到的两位数为这两个两位数的和为2、如果用a、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为交换这个三位数的百位数字和个位数字后得到的三位数为这两个三位数的差为●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?说说你是如何运算的?▲整式的加减运算实质就是运算的结果是一个多项式或单项式。三、巩固练习:1、填空:(1)与的差是(2)、单项式、、、的和为参考资料,少熬夜!(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需()个棋子,n个三角形需个棋子2、计算:(1)(2)(3)3、(1)求与的和(2)求与的差4、先化简,再求值:其中四、提高练习:1、若A是五次多项式,B是三次多项式,则A+B一定是(A)五次整式(B)八次多项式(C)三次多项式(D)次数不能确定2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场记0分,那么某队在比赛胜5场,平3场,负2场,共积多少分?3、一个两位数与把它的数字对调所成的数的和,一定能被14整除,请证明这个结论。4、如果关于字母x的二次多项式的值与x的取值无关,试求m、n的值。五、小结:整式的加减运算实质就是去括号和合并同类项。六、作业:第8页习题1、2、315.1.2整式的加减(2)教学目标:1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。2、通过探索规律的问题,进一步符号表示的意义,发展符号感,发展推理能力。教学重点:整式加减的运算。教学难点:探索规律的猜想。教学方法:尝试练习法,讨论法,归纳法。教学用具:投影仪教学过程:I探索练习:摆第1个“小屋子”需要5枚棋子,摆第2个需要枚棋子,摆第3个需要枚棋子。按照这样的方式继续摆下去。(1)摆第10个这样的“小屋子”需要枚棋子(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。二、例题讲解:三、巩固练习:1、计算:参考资料,少熬夜!(1)(14x3-2x2)+2(x3-x2)(2)(3a2+2a-6)-3(a2-1)(3)x-(1-2x+x2)+(-1-x2)(4)(8xy-3x2)-5xy-2(3xy-2x2)2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A(2)A-3B3、列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么(1)第一个角是多少度?(2)其他两个角各是多少度?四、提高练习:1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?2、设A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+(y+3)2=0,且B-2A=a,求A的值。3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:试化简:│a│-│a+b│+│c-a│+│b+c│小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。作业:课本P14习题:1(2)、(3)、(6),2。因式分解优秀教案【第二篇】教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)。x2-4y2=(x+2y)(x-2y)因式分解(2)。2x(x-3y)=2x2-6xy整式乘法参考资料,少熬夜!(3)。(5a-1)2=25a2-10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解(5)。(a-3)(a+3)=a2-9整式乘法(6)。m2-4=(m+4)(m-4)因式分解(7)。2πR+2πr=2π(R+r)因式分解2、。规律总结(教师讲解):分解因式与整式乘法是互逆过程。分解因式要注意以下几点:(1)。分解的对象必须是多项式。(2)。分解的结果一定是几个整式的乘积的形式。(3)。要分解到不能分解为止。3、因式分解的方法提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练试一试把下列各式因式分解:(1)。1-x2=(1+x)(1-x)(2)。4a2+4a+1=(2a+1)2(3)。4x2-8x=4x(x-2)(4)。2x2y-6xy2=2xy(x-3y)三、例题讲解例1、分解因式(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)(3)(4)y2+y+例2、分解因式1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=例3、分解因式1、72-2(13x-7)22、8a2b2-2a4b-8b3三、知识应用1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)24、。若x=-3,求20x2-60x的值。5、1993-199能被200整除吗?还能被哪些整数整除?四、拓展应用1、计算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)2、20042+2004被2005整除吗?3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数。五、课堂小结:今天你对因式分解又有哪些新的认识?因式分解教案【第三篇】教学目标:1、掌握用平方差公式分解因式的方法;掌握提公因式法,参考资料,少熬夜!平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。教学重点:应用平方差公式分解因式.教学难点:灵活应用公式和提公因式法分解因式,并理解因式分解的要求.教学过程:一、复习准备导入新课1、什么是因式分解?判断下列变

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功