5-机械制图平面的投影

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

15.1平面的投影一、平面的表示法●●●●●●abcabc不在同一直线上的三个点●●●●●●abcabc直线及线外一点abcabc●●●●●●d●d●两平行直线abcabc●●●●●●两相交直线●●●●●●abcabc平面图形1、用几何元素表示平面232、平面的迹线表示法VHPPVPHPVPHVHQVQHQHQVQ4平行垂直倾斜投影特性★平面平行投影面-----投影就把实形现★平面垂直投影面-----投影积聚成直线★平面倾斜投影面-----投影类似原平面实形性类似性积聚性⒈平面对一个投影面的投影特性二、平面的投影特性5⒉平面在三投影面体系中的投影特性平面对于三投影面的位置可分为三类:投影面垂直面投影面平行面一般位置平面特殊位置平面垂直于某一投影面,倾斜于另两个投影面平行于某一投影面,垂直于另两个投影面与三个投影面都倾斜正垂面侧垂面铅垂面正平面侧平面水平面61)投影面垂直面铅垂面正垂面侧垂面7VWHPPH铅垂面投影特性:1、abc积聚为一条线2、abc、abc为ABC的类似形3、abc与OX、OY的夹角反映、角的真实大小ABCacbababbaccc8VWHQQV正垂面投影特性:1、abc积聚为一条线2、abc、abcABC的类似形3、abc与OX、OZ的夹角反映α、角的真实大小αababbacccAcCabB9VWHSWS侧垂面投影特性:1、abc积聚为一条线2、abc、abc为ABC的类似形3、abc与OZ、OY的夹角反映α、β角的真实大小CabABcabbbaaαβccc10abcacbcba类似性类似性积聚性铅垂面投影特性:在它垂直的投影面上的投影积聚成直线。该直线与投影轴的夹角反映空间平面与另外两投影面夹角的大小。另外两个投影面上的投影有类似性。为什么?γβ是什么位置的平面?112)投影面平行面水平面正平面侧平面12VWH水平面投影特性:1、abc、abc积聚为一条线积聚为一条线,具有积聚性2、水平投影abc反映ABC实形CABabcbacabccabbbaacc13正平面VWH投影特性:1、abc、abc积聚为一条线,具有积聚性2、正平面投影abc反映ABC实形cabbacbcabacabcbcaCBA14投影特性:1、abc、abc积聚为一条线,具有积聚性2、侧平面投影abc反映ABC实形侧平面VWHabbbacccabcbacabcCABa15abcabcabc积聚性积聚性实形性水平面投影特性:在它所平行的投影面上的投影反映实形。另两个投影面上的投影分别积聚成与相应的投影轴平行的直线。163)一般位置平面17一般位置平面投影特性1、abc、abc、abc均为ABC的类似形2、不反映、、的真实角度abcbacababbaccbacCAB18判断直线在平面内的方法定理一若一直线过平面上的两点,则此直线必在该平面内。定理二若一直线过平面上的一点,且平行于该平面上的另一直线,则此直线在该平面内。⒈平面上取任意直线三、平面上的直线和点1920abcbcaabcbcadmnnmd例1:已知平面由直线AB、AC所确定,试在平面内任作一条直线。解法一解法二根据定理二根据定理一有多少解?有无数解。21例2:在平面ABC内作一条水平线,使其到H面的距离为10mm。nmnm10cabcab唯一解!有多少解?22⒉平面上取点23先找出过此点而又在平面内的一条直线作为辅助线,然后再在该直线上确定点的位置。例1:已知K点在平面ABC上,求K点的水平投影。b①accakb●k●面上取点的方法:首先面上取线②●abca’bkcdk●d利用平面的积聚性求解通过在面内作辅助线求解24例题2已知ABC给定一平面,试判断点D是否属于该平面。ddabcabcee25bckadadbcadadbckbc例3:已知AC为正平线,补全平行四边形ABCD的水平投影。解法一解法二263、平面上的投影面平行线一般位置平面上存在一般位置直线和投影面平行线,不存在投影面垂直线。2728abcbac例题已知ABC给定一平面,试过点C作属于该平面的正平线,过点A作属于该平面的水平线。mnnm29例:在平面ABC上取一点K,使点K在点A之下15mm、在点A之前20mm处。305.2圆的投影圆的投影特性:1、圆平面在所平行投影面上的投影反映实形;2、圆平面在所垂直的投影面上的投影是直线,其长度等于圆的直径;3、圆平面在所倾斜的投影面上的投影是椭圆。其长轴是圆的平行于这个投影面的直径的投影;短轴是圆的与上述直径垂直的直径的投影;315.3直线与平面及两平面的相对位置相对位置包括平行、相交和垂直。一、平行问题直线与平面平行平面与平面平行包括⒈直线与平面平行定理:若一直线平行于平面上的某一直线,则该直线与此平面必相互平行。32n●●acbmabcmn例1:过M点作直线MN平行于平面ABC。有无数解有多少解?33正平线例2:过M点作直线MN平行于V面和平面ABC。c●●bamabcmn唯一解n34例题3试判断直线AB是否平行于定平面fgfgbaabcededc结论:直线AB不平行于定平面35⒉两平面平行①若一平面上的两相交直线对应平行于另一平面上的两相交直线,则这两平面相互平行。②若两投影面垂直面相互平行,则它们具有积聚性的那组投影必相互平行。fhabcdefhabcdecfbdeaabcdef36例题1试判断两平面是否平行fededfcaacbbmnmnrrss结论:两平面平行37例题2已知定平面由平行两直线AB和CD给定。试过点K作一平面平行于已知平面。emnmnfefsrsrddcaacbbkk38二、相交问题直线与平面相交平面与平面相交⒈直线与平面相交直线与平面相交,其交点是直线与平面的共有点。要讨论的问题:●求直线与平面的交点。●判别两者之间的相互遮挡关系,即判别可见性。我们只讨论直线与平面中至少有一个处于特殊位置的情况。3940abcmncnbam⑴平面为特殊位置例:求直线MN与平面ABC的交点K并判别可见性。空间及投影分析平面ABC是一铅垂面,其水平投影积聚成一条直线,该直线与mn的交点即为K点的水平投影。①求交点②判别可见性由水平投影可知,KN段在平面前,故正面投影上kn为可见。还可通过重影点判别可见性。k●1(2)作图k●●2●1●4142km(n)b●mncbaac⑵直线为特殊位置空间及投影分析直线MN为铅垂线,其水平投影积聚成一个点,故交点K的水平投影也积聚在该点上。①求交点②判别可见性点Ⅰ位于平面上,在前;点Ⅱ位于MN上,在后。故k2为不可见。1(2)k●2●1●●作图用面上取点法43⒉两平面相交两平面相交其交线为直线,交线是两平面的共有线,同时交线上的点都是两平面的共有点。要讨论的问题:①求两平面的交线方法:⑴确定两平面的两个共有点。⑵确定一个共有点及交线的方向。只讨论两平面中至少有一个处于特殊位置的情况。②判别两平面之间的相互遮挡关系,即:判别可见性。44可通过正面投影直观地进行判别。abcdefcfdbeam(n)空间及投影分析平面ABC与DEF都为正垂面,它们的正面投影都积聚成直线。交线必为一条正垂线,只要求得交线上的一个点便可作出交线的投影。①求交线②判别可见性作图从正面投影上可看出,在交线左侧,平面ABC在上,其水平投影可见。n●m●●能否不用重影点判别?能!如何判别?例:求两平面的交线MN并判别可见性。⑴4546bcfhaeabcefh1(2)空间及投影分析平面EFH是一水平面,它的正面投影有积聚性。ab与ef的交点m、bc与fh的交点n即为两个共有点的正面投影,故mn即MN的正面投影。①求交线②判别可见性点Ⅰ在FH上,点Ⅱ在BC上,点Ⅰ在上,点Ⅱ在下,故fh可见,n2不可见。作图m●●n●2●n●m●1●⑵47cdefababcdef⑶投影分析N点的水平投影n位于Δdef的外面,说明点N位于ΔDEF所确定的平面内,但不位于ΔDEF这个图形内。所以ΔABC和ΔDEF的交线应为MK。n●n●m●k●m●k●互交48小结重点掌握二、如何在平面上确定直线和点。三、两平面平行的条件一定是分别位于两平面内的两组相交直线对应平行。四、直线与平面的交点及平面与平面的交线是两者的共有点或共有线。解题思路:★空间及投影分析目的是找出交点或交线的已知投影。★判别可见性尤其是如何利用重影点判别。一、平面的投影特性,尤其是特殊位置平面的投影特性。49要点一、各种位置平面的投影特性⒈一般位置平面⒉投影面垂直面⒊投影面平行面三个投影为边数相等的类似多边形——类似性。在其垂直的投影面上的投影积聚成直线——积聚性。另外两个投影类似。在其平行的投影面上的投影反映实形——实形性。另外两个投影积聚为直线。50二、平面上的点与直线⒈平面上的点一定位于平面内的某条直线上⒉平面上的直线⑴过平面上的两个点。⑵过平面上的一点并平行于该平面上的某条直线。三、平行问题⒈直线与平面平行直线平行于平面内的一条直线。⒉两平面平行必须是一个平面上的一对相交直线对应平行于另一个平面上的一对相交直线。51四、相交问题⒈求直线与平面的交点的方法⑴一般位置直线与特殊位置平面求交点,利用交点的共有性和平面的积聚性直接求解。⑵投影面垂直线与一般位置平面求交点,利用交点的共有性和直线的积聚性,采取平面上取点的方法求解。⒉求两平面的交线的方法⑴两特殊位置平面相交,分析交线的空间位置,有时可找出两平面的一个共有点,根据交线的投影特性画出交线的投影。⑵一般位置平面与特殊位置平面相交,可利用特殊位置平面的积聚性找出两平面的两个共有点,求出交线。52特殊位置线面相交特殊位置线面相交,其交点的投影可利用直线或平面的积聚性投影直接求出。(l)当直线为一般位置,平面的某个投影具有积聚性时,交点的一个投影为直线与平面积聚性投影的交点,另一个投影可在直线的另一个投影上找到。(2)当直线的某个投影具有积聚性,平面为一般位置时,交点的一个投影与直线的积聚性投影重合,另一个投影可利用在平面上找点的方法在平面的另一个投影上得到。53bbaaccmmnn直线与特殊位置平面相交由于特殊位置平面的某些投影有积聚性,交点可直接求出。VHPHPABCacbkNKMkk54判断直线的可见性VHPHPABCacbkNKMbbaaccmmnkkn特殊位置线面相交,根据平面的积聚性投影,能直接判别直线的可见性。55一般位置平面与特殊位置平面相交求两平面交线的问题可以看作是求两个共有点的问题,由于特殊位置平面的某些投影有积聚性,交线可直接求出。nlmmlnbaccabfkfkVHMmnlPBCacbPHkfFKNL56判断平面的可见性bbacnlmcmalnfkfkVHMmnlBCackfFKNL

1 / 56
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功