参考资料,少熬夜!解决问题的策略教学反思(5篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“解决问题的策略教学反思(5篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!解决问题的策略1教学内容:教科书第91页例2,第92页“练一练”第1、2题。教学目标:1、使学生在解决问题的过程中,初步学会用假设的策略,分析数量关系,确定解题思路,并有效地解决问题。2、使学生感受假设的策略是为了先满足一个条件,进而感受再用替换的策略调整以满足另一个条件,感受这两种策略结合后解决问题的价值,进一步发展分析、综合和简单推理的能力。3、使学生进一步积累解决问题的策略意识,获得解决问题的成功体验,增强学习数学的信心。教学重点:会用“假设”的策略分析数量关系,用“替换”的策略调整,从而有效解决问题。教学难点:理解“假设”是为了满足第一个条件,“替换”是为了进一步满足第二个条件,理解替换的过程、替换次数就是换得的物体的数量。教学过程:一、复习引入师:同学们,以前我们已经学习了一些解决问题的策略。还记得有哪些策略来解决问题呢?(一一列举、列表、倒推、画图、替换。)师引入:解决问题的策略还有很多。今天我们要继续研究解决问题的策略。(板书课题)二、教学例题1、出示:21人去黄山湖公园划船,一共租用了5只船。大船每只坐5人,小船每只坐3人。大船和小船各租用了多少只?师:首先,我们一起来看这样一个问题。从题中你知道了哪些信息?那么,你认为怎样租船最合理(好)?(没有空位;每只船都坐满……)师:要解决这个问题,我们要满足哪几个条件?(一共5只船;只能坐21人,也就是只有21个座位)师:你认为可以用什么策略来解决这个问题呢?请自己先想一想,再把你的想法在小组里交流。2、汇报方法师:谁先来说说你的想法?(1)一一列举大船小船总人数1417人2319人生汇报,师适时提问。师:你怎么知道小船是4只呢?能坐多少人?你怎么想到大船要变成2只呢?(大船太多了;一只大船比一只小船能多坐2人…….)师:哦,我明白了,你就是把一只小船——换成了一只大船。现在要坐21人,怎么办?(再把一只小船替换成一只大船)课件演示过程。师:这时候,大船是几只?小船是几只?能坐多少人?问题解决了吗?齐答。小结:刚才,我们先满足5只这个条件,想大船1只小船4只,发现总人数17人不满足第二个条件,就用替换的方法,把小船替换成大船,直到两个条件都满足为止。其实,我们就是假设了大船是1只,小船是4只来思考的。你还有别的假设方法吗?(还可以怎样假设?)(2)假设全是大船师:那也就是说大船几只?小船呢?总人数25人是怎参考资料,少熬夜!样得到的?(板书:5×5=25人)师:需要5只大船吗?为什么不需要?(因为还有4个空位)4个空位你是怎么知道的?(板书:25-21=4人)怎样才能减少这4个空位呢?(把大船替换成小船)师:哦,把大船替换成小船,替换1次,结果会怎样?(减少2个空位)2个空位你是怎样得到的?(板书:5-3)师:可现在有4个空位,要替换几次?2次可以怎样算?(板书:4÷(5-3)=2)师:我们把大船替换成小船,替换了2次就可以得到哪种船的只数?为什么?(大替换成小,替换了2次就有2只小船。)(板书:小)(3)假设全是小船师:也就是说大船几只?小船呢?15人是怎样得到的?(板书3×5=15人)你怎么知道还有6人没坐到船?该怎么办?(把小船替换成大船)为什么要把小替换成大?(能多坐2人)替换几次?可以怎样算?(板书:6÷(5-3)=3)替换了3次就得到3只什么船?3、小结师:同学们,刚才我们解决这个问题时,用了什么策略?有的同学用了一一列举、列表、画图……你喜欢哪种?说说你的理由。三、巩固练习1、师:你们都比较喜欢这种方法,那你能用这种方法完成下面的填空呢?出示:六年级同学制作了176件蝴蝶标本,分别在13块展板上展出。每块小展板贴8件,每块大展板贴20件。两种展板各有多少块?假设全是()展板,一共能贴()件蝴蝶标本。与176件相差()件标本,每块大展板与每块小展板相差()件。应把()展板替换成()展板,要替换()次,才能满足176件这个条件。所以,()展板有()块,()展板有()块。师:260件是怎样算的?为什么要把大展板替换成小展板?替换6次是怎样想的?替换6次就有6块什么展板?比较这两种方法,有什么相同的地方?2、师:你能用假设和替换的策略解决下面一题吗?出示:鸡和兔一共8只,数一数腿有22条。你知道鸡和兔各有多少只?学生汇报做法,说明每一步的想法。师:可以怎样检验?四、课堂小结师:今天我们学习了——?什么策略?其实解决问题的策略很多,我们在解答时可以灵活选择策略。像今天这样的问题,我们不能直接找到解答的方法,就可以用假设的策略先满足一个条件,再进行替换满足第二个条件,最终解决问题。《解决问题的策略——一一列举》2教学内容:五上第63~64页的例1、例2和练一练。教学目标:1、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。2、使学生在对解决简单实际问题过程的反思和交流中,感受一一列举的特点和价值,进一步发展思维的条理性和严密性。3、增强解决问题的策略意识,提高解决问题的实际能力。教学重点:能对信息进行用一一列举的策略解决实际问题。参考资料,少熬夜!教学难点:能有条理的一一列举,并进行分析教学准备:课件、小棒、表格、教学过程:一、创设情景,体验列举1、课前游戏:飞镖激趣请几个精神饱满的同学上来玩飞镖游戏。投中内圈10环,中圈8环,外圈6环。比一比谁最厉害?师:如果全班每人投一次,可能出现哪些不同的情况?你能一一列举出来吗?种类1234环数06810板书:一一列举2、门票引入:师:今天我们一起走进珍珠泉公园。去欣赏一下秋天的美景。珍珠泉公园儿童门票每张10元,小红口袋里有两张5元,五张2元,两张1元的纸币。小红怎样付10元门票钱?师:图上有那些数学信息?你能列举出几种付钱方法?生:2张5元,5张2元,一张5元两张2元1张1元,4张2元两张1元。3、揭示课题:师:一一列举也是解决问题的一种策略,今天我们学习这种策略解决新的问题。板书课题:解决问题的策略二、自主探究,运用列举(一)创设情景,引出问题1、引发列举需要。下面一起走进公园:公园里工人师傅用18根1米长的栅栏围成一个长方形花圃的景点。供游客们休闲和拍照。有多少种不同的围法?(1)创设情景:师:图上有哪些数学信息?生:18根1米长的栅栏围成的长方形周长就是18米。(2)动手操作:师:以小组为单位用小棒摆一摆,说出你摆的长方形长和宽分别是多少?①汇报交流:生1:长8,宽1米。生2:长5,宽4米。……②师:运用摆小棒寻求答案感觉怎样?如果是180根栅栏用小棒摆又会怎么样?生1:用小棒摆有点烦。参考资料,少熬夜!生2:答案可能有重复和遗漏(板书:重复、遗漏)2、运用填表列举(1)出示表格:长方形的长/米长方形的宽/米长方形的面积/平方米师:用表格列举长和宽的和会怎样?生:长和宽的和一定是9米。(2)师:一共列举出多少种围法?师:比较学生两种围法(有顺序和无顺序)哪种好?板书:有序师:用表格列举与摆小棒相比有什么好处?生:不重复,不遗漏。板书:不重复,不遗漏小结:在列举的时候我们要按照一定的顺序列举,这样答案才能不重复、不遗漏。3、反思列举方法(1)观察这张表格,你有什么新的发现?[小组里交流](2)师:如果你是工人师傅你会选择那种围法?4、感知列举策略(出示各长方形)教师说明:在周长不变的前提下,当长方形的长和宽的差越大,面积就越小;长方形的长和宽数据越接近,面积就越大。小结:通过一一列举可以将答案不重复、不遗漏的列举出来。走进公园小红和小明、小强三人都想照相。5、巩固列举:长方形花圃的景点旁边有一条小道,用24块边长为1平方分米的防滑地砖铺地,有多少种不同的铺法?长方形的长/分米长方形的宽/分米参考资料,少熬夜!长方形的面积/平方分米师:用什么策略解决这个问题?(二)循序渐进,深入问题1、出示题目:小红和小明、小强三人来到公园进行照相,有多少种不同的照法?[调换顺序算一种]2、一一列举:师:你们打算用什么策略解决这个问题?生:一一列举。师:列举时,打算分哪几种照相的情况?生:分三类:单人照,双人照,三人照。师:分步出示表头和三类情况。(1)列举时可以用老师提供的表格,在表格里打钩。例如:小红√姓名单人照双人照三人照小红小明小强(2)也可以用文字列举。例如:小红、小明……师:用自己喜欢的列举方式进行吧!3、反馈交流:师:你是怎样列举的?师:一共有几种不同的情况?三、拓展应用,发展列举参考资料,少熬夜!1、飞镖游戏:师:每人投中两次是什么意思。师:有多少种不同的情况?请在练习纸上自己列举出所有可能的答案。课件演示:投中两次最多的多少环?最少的多少环?按照顺序列举,一共有多少种不同的环数?2、观看表演:师:玩过飞镖游戏,精彩的动物表演马上就要开始来!师:已经表演了几场:8:00、8:50、9:40和10:30师:现在是11:15,我们还能赶上下一场表演开始吗?你是怎么知道的?师:下面哪个时刻正好是一场表演的开始时刻?出示:13:0014:3015:3016:00师:你能按照每间隔50分钟再一一列举出下面的表演时刻,然后再判断。四、总结延伸,发展列举1、通过这节课的学习,我们又认识了一种新的解决问题的策略一一列举。下面去泉中划船游览美景!五(1)班有48人去划船,每条大船可坐6人,每条小船可坐4人;有多少种租船方案?大船/条小船/条租金五(1)班有48人去划船,每条大船可坐6人,每条大船租金24元;每条小船可坐4人,每条小船租金20元;哪种租船方案最省钱?2、列举使我们获得解决问题成功体验,也请课代表把全班同学上课的感受一一列举出来,然后告诉仇老师好吗?《解决问题的策略——一一列举》3重点难点:参考资料,少熬夜!教学重点:让学生体会策略的价值,并使学生能主动运用策略解决问题。教学难点:在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。目标叙写:1、使学生经历用列举的策略解决简单的实际问题的过程,能通过不遗漏,不重复的列举找到符合要求的所有答案。2、使学生在对解决简单实际问题的过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。3、使学生进一步积累解决问题的经验,增强解决问题的信心。过程设计:一。谈话导入谈话:同学们,在四年级我们曾经两次学到过解决问题的策略,还记得“策略”是什么意思吗?(指名答:方法)那么你们还记得我们曾经学过哪些策略吗?(画图,列表)引入课题:今天我们就继续来学习解决问题的策略(板上课题)二。教学例11、提出问题屏幕出示例题及其场景图,自主读题:王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?师:从题目中你能获得哪些数学信息?你是怎么理解18根1米长的栅栏这个信息的?引导:既然周长18米是固定的,为什么还会有不同的围法呢?(生:长8宽1,长7宽2……)师:哦,虽然周长不变,但只要改变长和宽,就有不同的围法了。2、探究方法你能帮王大叔找出所有不同的围法吗?请同学们把不同的围法整理在老师发下来的这张表格中。长方形的宽(m)长方形的长(m)学生尝试独立解决问题,教师巡视(选取典型)3、组织交流(1)小组交流谈话:你找到了几种不同的围法呢?请跟小组同学介绍一下你找到的围法。(2)全班交流师:老师这里有几个同学解答的情况,我们一起来看一看。预设一:解答错误的提问:这位同学找到了这样几种围法,大家认为正确吗?参考资料,少熬夜!谁知道他错误的原因是预设二:思路正确但结果重复或遗漏的提问:你能看出他是怎么思考的吗?这样思考对不对?他找到了这么多的围法,大家同意吗?想一想:重复或遗漏的原因可能是什么?(重复的说明:若4、5/5、4是摆放位置不同,其实是一种围法)预设三:有序先请该生介绍一下自己的思路提问:写到“宽4米长5米”为什么不再继续写下去了?大家说说他找出所有围法了吗?谁来评价一下他解决问题的过程。(有序