参考资料,少熬夜!等比数列实用4篇【导读指引】三一刀客最漂亮的网友为您整理分享的“等比数列实用4篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!等比数列1教学目标1.把握等比数列前项和公式,并能运用公式解决简单的问题。(1)理解公式的推导过程,体会转化的思想;(2)用方程的思想熟悉等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想。3.通过公式推导的教学,对学生进行思维的严谨性的练习,培养他们实事求是的科学态度。教学建议教材分析(1)知识结构先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和。(2)重点、难点分析教学重点、难点是等比数列前项和公式的推导与应用。公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是把握推导公式的方法。等比数列前项和公式是分情况讨论的,在运用中要非凡注重和两种情况。教学建议(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题。(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证实结论。(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的爱好。(4)编拟例题时要全面,不要忽略的情况。(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大。(6)补充可以化为等差数列、等比数列的数列求和问题。教学设计示例课题:等比数列前项和的公式教学目标参考资料,少熬夜!(1)通过教学使学生把握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质。(3)通过教学进一步渗透从非凡到一般,再从一般到非凡的辩证观点,培养学生严谨的学习态度。教学重点,难点教学重点是公式的推导及运用,难点是公式推导的思路。教学用具幻灯片,课件,电脑。教学方法引导发现法。教学过程一、新课引入:(问题见教材第129页)提出问题:(幻灯片)二、新课讲解:记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消。(板书)即,①,②②-①得即.由此对于一般的等比数列,其前项和,如何化简?(板书)等比数列前项和公式仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即(板书)③两端同乘以,得④,③-④得⑤,(提问学生如何处理,适时提醒学生注重的取值)当时,由③可得(不必导出④,但当时设想不到)当时,由⑤得.于是反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列。(板书)例题:求和:.设,其中为等差数列,为等比数列,公比为,利用错位相减法求和。解:,两端同乘以,得,两式相减得于是.说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题。公式其它应用问题注重对公比的分类讨论即可。参考资料,少熬夜!三、小结:1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;2.用错位相减法求一些数列的前项和。四、作业:略.五、板书设计:等比数列前项和公式例题等比数列2教学目的:1.掌握等比数列的定义。2.理解等比数列的通项公式及推导;理解等比中项概念。教学重点:等比数列的定义及通项公式教学难点:灵活应用定义式及通项公式解决相关问题教学过程:一、复习引入:1.等差数列的定义:-=d,(n≥2,n∈n*)2.等差数列的通项公式:3.几种计算公差d的方法:d=-==4.等差中项:成等差数列二、讲解新课:下面我们来看这样几个数列,看其又有何共同特点?1,2,4,8,16,…,263;①5,25,125,625,…;②1,-,…;③对于数列①,=;=2(n≥2)对于数列②,=;=5(n≥2)对于数列③,=·;(n≥2)共同特点:从第二项起,每一项与前一项的比都等于同一个常数1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做等比数列的公比;公比通常用字母q表示(q≠0),即:{}成等比数列=q(,q≠0)注意:等比数列的定义隐含了任一项2.等比数列的通项公式1:由等比数列的定义,有:;;;…………………3.等比数列的通项公式2:4.既是等差又是等比数列的数列:非零常数列。5.等比中项:如果在a与b中间插入一个数g,使a,g,b成等比数列,那么称这个数g为a与b的等比中项。即g=±(a,b同号)a,g,b成等比数列g=ab(a·b≠0)三、例题例1课本p123例1,请同学们认真阅读题目,并自己动手解题。例2一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项。(课本p123例2)例3求下列各等比数列的通项公式:1.=-2,=-8(答案)2.=5,且2=-3例4.求数列=5,且的通项公式解:以上各式相乘得:例5.已知{an}、{bn}是项数相同的等比数列,求证是等比数列。(课本p123例3)四、练习:1.求下面等比数列的第4项与第5项:(1)5,-15,45,……;(2),,,……;(3),…….2.一个等比数列的第9项是,公比是-,求它的第1项。五、作业:课本p125习题1(2)(4),2,5,6,7(2),参考资料,少熬夜!8,9.探究活动3将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为毫米。参考答案:30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚毫米,对折34次就超过珠穆朗玛峰的高度了。还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(用对数算也行)。等比数列4(选自人教版高中数学第一册(上)第三章第五节)一、教材分析1.从在教材中的地位与作用来看《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。2.从学生认知角度看从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。3.学情分析教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。4.重点、难点教学重点:公式的推导、公式的特点和公式的运用。教学难点:公式的推导方法和公式的灵活运用。公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。二、目标分析知识与技能目标:理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。情感与态度价值观:通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。三、过程分析学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:1.创设情境,提出问题在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王参考资料,少熬夜!大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔。2.师生互动,探究问题在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。3.类比联想,解决问题这时我再顺势引导学生将结论一般化,这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学参考资料,少熬夜!习的愉快和成就感。对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。4.讨论交流,延伸拓展在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道,那么我们能否利用这个关系而求出sn呢?根据等比数列的定义又有,能否联想到等比定理从而求出sn呢?设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围。以上两种方法都可以化归到,这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用。5.变式训练,深化认识首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共