1固定收益证券定价(二)在定价过程中,实际上假设了贴现率不随时间变化,也就是说不管是从现在开始的一年还是从明年开始的一年,只要时间长度相同,不同时间起点的利率是相同的。实际情况不是这样的,投资者认为现在的一年期利率不等于一年后的一年期利率从固定收益证券的到期收益率来看,利率不随时间变化意味着所有信用风险相同的债券的到期收益率都相等。假设短期债券和长期债券的收益率相同,那么由于长期债券的期限比短期债券的期限长,投资者在持有长期债券时的风险显然要大于投资者持有短期债券时的风险,长期债券的吸引力下降使得价格下跌,收益率上升,而短期债券由于风险小,价格会上升,收益率下降,最终两者的收益率应该是有区别的结论:收益率的大小与时间应该是有关的.(收益率的期限结构)不同形状的收益率曲线将具有同样信用级别而期限不同的债券收益率的关系用坐标图曲线表示出来便形成了收益率曲线。收益率和期限间的关系被称为利率期限结构。一般来说,市场上所用的收益率曲线都是对国库券市场价格和收益的观察形成的。两个原因:其一,国债是无风险资产,信用差别并不影响收益率,因为所有国债的信用级别是相同的,没有信用度的差异对收益率的影响;其二,国债市场是最活跃的债券市场,它具有最强的流动性,很高的交易频率。向上的收益率曲线(正常的)反向的收益率曲线水平收益率曲线国债收益率曲线的主要功能是,可以其作为基准给债券定价和给其他的债券市场上的债券品种设置收益率标准。在银行贷款、公司债、抵押和国际债券方面。但传统方式构造的国债收益率曲线并不是度量贴现率和债券期限关系的一种令人满意的方法。原因:到期时间相同的证券可能具有不同的收益率。一般地,任何债券都可被看作是零息债券的组合。附息国债的价值等于复制其现金流量的所有零息债券价值的总和。债券价格应等于所有零息债券的价值和。如果这一点不成立,对于市场参与者来说,就有可能通过套利交易来获取无风险收益。要确定每一零息债券的值.就有必要知道具有相同到期的零息国债的收益率,这一收益率被称为即期利率描绘即期利率和期限关系的曲线被称为即期利率曲线。2由于零息国债的期限不会长于1年,所以,不可能只从对国债市场活动的观察来构建这么一条单一曲线,而只能从对国债实际交易收益率中理论上推出即期收益率曲线,由此,这一收益被称为理论即期收益率曲线,它也就是利率期限结构的几何描述。构建国债的理论即期收益率曲线,首先要选择以何种国债的收益率曲线作为基础。可供选择的国债类型包括(1)新发行国债;(2)新发行国债及有选择的非新发行国债;(3)所有的附息中长期国债与短期国库券;(4)零息国债。当用于构建理论即期利率曲线的债券选定后,就要确定构造曲线的方法,方法取决于被选定的证券。如果是零息国债,则程序很简单,原因是所观察到的利率即为即期利率。如果选定的是公开或者新发行国债与特定非新发行国债,则其中所用的方法被称为自力性方法如果所用的是全部附息国债与短期国库券,则其中的方法使用复杂的概率统计知识。线性推算法运用新发行国债收益率曲线构造理论即期利率曲线的过程。一般新发行国债包括3个月、6个月和1年期的短期国库券,2年、5年、10年的中期国债,30年的长期国债。短期国库券是零息债券,中期和长期国债是附息债券。构造60个半年期即期利率的理论即期收益率曲线的情况,即6个月期利率到30年期利率。除了3个月期短期国库券外,当使用公开国债构造时,仅有6年期限点,其余54个期限点由平价收益率曲线上周围的到期日点推算出来的,常用的简单推算方法是线性推算法。通过在较低期限点收益率上依次计算出来的结果,则可得到所有中间半年期满时的收益率。【例1】假设平价收益率曲线中2年和5年期的公开国债收益率分别是6%和6.6%,在这两个期限点间有6个半年期,则2.0年、2.5年、3.0年、3.5年、4.0年以及4.5年的推算收益率的计算如下:•2.5年收益率=6.00%十0.10%=6.10%•3.0年收益率=6.10%十0.10%=6.20%•3.5年收益率=6.20%十0.10%=6.30%•4.0年收益率=6.30%十0.10%=6.4%•4.5年收益率=6.40%十0.10%=6.50%存在两个问题:•首先,在一些期限点之间存有较大差额,差额可能是由线性推算法在估计这些期限点收益率时误导的,比如5年到10年间同10年到30年间的期限点收益率就存有较大差额。3•另外.新发行国债本身的收益率可能被误导,这是因为在回购市场上可用新发行国债来进行融资,导致实际收益率大于报价(可观察到的)收益率。自力性方法用BootStrapping方法(自力性方法)将平价收益率曲线转化为理论即期收益率曲线。•为简单起见,用这个方法计算10年期的理论即期收益率曲线,即要计算20个半年期的即期收益率。•除6个月期和1年期之外的所有债券均以面值交易(100),这些债券的票面利率等于其到期收益率。•6个月期和1年期债券是零息债券,且其价格小于面值。•假设每种债券的市价等于其面值,则其到期收益率便等同于票面利率。基本原则:附息国债的价值等于复制其现金流量的所有零息债券值的总和。•观察6个月期短期国库券,短期国库券是零息债券,因而其年收益率5.25%等于即期利率。•同样地,对于1年期国库券,收益率5.5%等于1年期即期利率。•给定这两个期限点的即期利率,可计算出1.5年期的零息国债的理论即期利率。理论上讲,1.5年期零息国债的价格应等于实际的1.5年期附息国债的三个现金流量现值,其中用作贴现因子的收益率为同现金流量相匹配的即期利率。表列示了1.5年国债票面利率为5.75%,票面价值为100,则其现金流量是、0.5年;0.0575×l00×0.5=2.8751.0年:0.0575×l00×0.5=2.8751.5年;0.0575×100×0.5十100=102.875现金流量的现值:2.875/(1十Z1)十2.875/(1十Z2)2十l02.875/(1十Z3)3其中:•Z1=半年期理论即期利率的1/2•Z2=1年期理论即期利率的1/2•Z3=1.5年期理论即期利率的1/2因为半年期即期利率和1年期即期利率分别是5.25%和5.50%.则Z1=0.02625,Z2=0.02751.5年期附息国债现值的计算为4由于1.5年期附息国债的价格为100美元,则下面的关系成立;从而解出的1.5年期债券理论即期利率如下:Z3=0.028798将这一收益率乘以2,则得到债券等价收益率5.76%,这便是1.5年期理论即期利率。如果这种证券在现实中存在,则这一利率便是市场所认可的1.5年期零息国债利率。在已计算的Z1、Z2、Z3(6个月、1年、1.5年)以及2年期债券的票面利率与价格基础上,可根据同样方法得到2年期债券的理论即期利率,同样,可进一步推出其余16个半年期的理论即期利率。•国债以即期收益率为定价基础•国债的价格等于用理论即期收益率折现现金流量的现值•为什么国债以即期收益率为定价基础呢?这是套利交易的结果。【例】:若发行面值100,票面利率为10%的10年期国债,根据即期收益率为基础定价为115.4206。115.4206美元的理论价格可以被认为是一组零息债券的价值和,也就是,如果购买的是利率为10%的10年期国债,然后将其进行本息分离处理,即将产生115.4206美元的收入。相反,现假设利率为10%的10年期国债是以收益率曲线给出的10年期国债的到期收益率为基础定价.从表中可知,10年期国债的到期收益率为7.8%。如果10年期国债用7.8%作为贴现率定价,则以115.0826美元的价格购买这一国债的国债,交易商就应抓住机会购买,然后作本息分离处理,并将由此衍生出的零息债券出售。正如刚刚说明的,这一过程所产生的现金流为115.4206美元。由此,交易商所购买的每100美元面值所实现的套利利润为0.338美元。攫取这一套期利润的交易商行为将会抬高该种国债的价格,只有当价格达到115.4206美元(既用理论即期收益率作为折现率所得到的理论价格)时,套利交易才会消失。也正是这种套利交易行为,迫使国债以理论即期收益率为定价基础的力量,这就是无套利定价原理。【案例1】假设从现在开始1年后到期的零息票债券的价格为98元,从1年后开始,在2年后到期的零息票债券的价格也为98元(1年后的价格)。另外,假设不考虑交易成本。5问题:(1)从现在开始2年后到期的零息票债券的价格为多少呢?(2)如果现在开始2年后到期的零息票债券价格为99元,如何套利呢?(1)从现在开始1年后到期的债券Z0×1(2)1年后开始2年后到期的债券Z1×2(3)从现在开始2年后到期的债券Z0×2动态组合复制策略:(1)先在当前购买0.98份的债券Z0×1;(2)在第1年末0.98份债券Z0×1到期,获得0.98×100=98元;(3)在第1年末再用获得的98元去购买1份债券Z1×2;自融资策略的现金流表这个自融资交易策略的损益:就是在第2年末获得本金100元,这等同于一个现在开始2年后到期的零息票债券的损益。这个自融资交易策略的成本为:98×0.98=96.04如果市价为99元,如何套利?构造的套利策略如下:(1)卖空1份Z0×2债券,获得99元,所承担的义务是在2年后支付100元;(2)在获得的99元中取出96.04元,购买0.98份Z0×1;(3)购买的1年期零息票债券到期,在第一年末获得98元;(4)再在第1年末用获得的98元购买1份第2年末到期的1年期零息票债券;(5)在第2年末,零息票债券到期获得100元,用于支付步骤(1)卖空的100元;6远期利率我们可以通过收益率曲线推出未来利率的市场预期——远期利率。假定一个投资者投资1年期的债券面临两种选择:选择1:购买1年期的国债。选择2:现买一种6个月的国债,6个月到期后再买另外6个月到期的国债。根据无套利原则,这两个选择所产生的收益率将是相同的。现在我们假设投资者已经知道6个月和1年的该国债的即期收益率,但是不知道从6个月到12个月的这种国债的即期收益率。相对于现在来说,这个利率是未来的,称为该种国债的6个月的远期利率。求出远期利率:假定1年期国债的到期价值为1000元,则1年期国债的价格可以如下表示:1000/[(1十Z2)×(1十Z2)〕其中Z2是理论上1年期债券即期利率的一半。假定投资者以p元的价格购买6个月的国债,在6个月末该国债的价格为p×(1十Z1)其中Z1是理论上6个月期债券即期利率。令f为6个月国债远期利率的一半,则p元投资1年后的价值为p×(1十Z1)×(1十f)假设投资p元1年之后的价值为l000元,则p×(1十Z1)×(1十f)=1000根据无套利原则,选择1和选择2的投资效果是相同的f的两倍为该国债的6个月远期利率。利用上一节,知道6个月的债券利率为0.080,也就是Z1=0.0401年期即期利率=0.83,则Z2=0.04l5,代入方程,得到f=1.0415×1.0415/1.0400-1=0.043在债券等价收益基础上远期利率f值为8.6%7从另外一个角度来看,到期价值为1000元的1年期国库券的价格为921.9(元)把921.9元以8%的即期利率投资6个月的话,则6个月末的价格为958.776(元)如果将958.776以8.6%的即期利率再投资6个月的话,则1年末的价格为1000(元)通过即期收益率曲线,可以运用同样的方法确定期限更长的远期利率,1年,1.5年,2年,2.5年的….甚至计算出未来任何时间的远期利率一般地,t期间的即期利率,半年的即期利率以及隐含的远期利率(半年)的关系如下:以前面的数据为例子来算算看:Z1也就是6个月的即期利率为2.625%,可得到什么情况下需要远期利率产品【案例2】向阳公司是一家化工企业,其原材料需要从国外进口。向阳公司的财务总监在制定2009年财务预算时,预计公司由于在5~11月进口原材料而需要向银行借款200万美元,即在2009年5月份需要借款,而在2009年11月左右可还款。假设公司可以直接使用美元贷款和还款,不考虑汇率问题。如果2009年5月利率上升,怎么办