第五章CAPM的应用利用Markowitz模型进行积极证券组合管理市场模型在消极证券组合管理中的应用利用Beta去得到好的协方差估计利用Beta去得到好的期望回报率估计CAPM在消极证券组合管理中的应用Black-Litterman方法例子:GlobalPortfolioOptimization1.利用Markowitz模型进行积极证券组合管理经典Markowitz模型的缺点待估计的期望值、协方差参数数量大利用历史数据得到的最优证券组合权重不合理Wheninvestorsimposenoconstraints,themodelsalmostalwaysordainlargeshortpositionsinmanyassets.Whenconstraintsruleoutshortpositions,themodelsoftenprescribecornersolutionswithzeroweightsinmanyassets,aswellasunreasonablylargeweightsintheassetsofmarketswithsmallcapitalizations.Theseunreasonableresultsstemfromtwowellrecognizedproblems:由历史数据得到的期望值估计对将来回报率预测能力很差最优证券组合权重对于期望回报率假设非常敏感例:100种证券形成的证券组合例:letuslookatthesortofportfolioallocationwegetifweusehistoricalreturnsandvolatilitiesasinputs:Historicalcorrelations:Ifyouuseourproceduresandcalculateandoptimalportfolio,with,youwillgetportfolioweightsof:%7.10PWecanmakeanumberofpointsabouttheseoptimalportfolios.Theyillustratewhatwemeanwhenweclaimthatstandardmean-varianceoptimizationmodelsoftengenerateunreasonableportfolios.Theuseofpastexcessreturnstorepresentaneutralsetofviewsisequivalenttoassumingthattheconstantportfolioweightsthatwouldhaveperformedbesthistoricallyareinsomesenseneutral.Inreality,ofcourse,theyarenotneutralatall,butratherareaveryspecialsetofweightsthatgoshortassetsthathavedonepoorlyandgolongassetsthathavedonewellintheparticularhistoricalperiod.Aremedyforbothoftheseproblemsistouse(1)marketmodeltocalculateassetcovariance,(2)andusetheCAPMtodeterminewhatmarketexpectationmustbe,andthencombineyour“view”withtheCAPMderivedestimatestogetportfolioweights.Thekeyinputwewillneedforbothoftheseisthesetofassetbetas,so,first,wemustconsidertheproblemofestimatingbetas2.Beta值的估计利用市场模型估计Anapproachtoestimatingandistoassumethatamarketmodel(andtheCAPM)describesreturnsThemarketmodelTogetexpectedreturnsuse:Togetcovariances/correlations,use:Forstandarddeviations:fMifirrErrEirEij2MjiijjiMjiij22222iMiiiiitftMtiiftitrrrr待估计的参数数量大大减少(例如,100种证券形成的证券组合)i3.CAPM与积极的证券组合管理为了得到最优证券组合,我们需要估计证券组合前沿,有效集方法一:完全忽略市场的观点,而估计所有证券的期望回报率、协方差例如:利用历史的数据该方法存在问题方法二:接受市场的观点,简单的持有市场证券组合如果你拥有市场价格还没有反映的信息,该方法并不告诉该如何处理Theapproachwewillinsteadtakeisto1.Calculatebeta’sforthesecuritiesweplantohold2.Usingthesebeta’s,calculateand,assumingtheCAPMholdsexactly3.Then,incorporateourinformationby“perturbing”thevaluesawayfromtheCAPM-calculatedvalues4.Finally,usingtheseestimatesandtheMarkowitzportfoliooptimizationtoolsdetermineouroptimalportfolioweights.ijirENotethatifWestartwithalloftheassetsinmarketportfolioWeusetheunmodifiedandwegetfromstep2aboveThentheweightswecalculateinstep4willbeexactlythoseofthemarketportfolioijirEAnexampleUsingmonthlydataforGE,IBM,Exxon(XON),andGMfor94:01-98:12---VWistheValue-WeightedindexofallNYSE,AMEX,andNASDAQcommonstocks.Rfisthe(nominal)1-monthT-Billyield,whichwas4.394%/year(0.359%/month)inJanuary’99.ExcessReturnsMean(%)Std(%)alpha(%)betaStd(%)(%)IBM3.228.441.721.147.1328.5XON1.414.030.630.593.2833.7GM0.647.34-0.691.026.1430.0GE2.265.860.901.044.1549.9VW1.314.02Rf0.390.052adjRTogetthecorrelationstructure,wehave:jiMjiij2IBMXONGMGEIBM10.320.300.39XON0.3210.330.42GM0.300.3310.40GE0.390.420.401Pluggingthe(1)expectedreturn,(2)returnstandarddeviation,and(3)correlationmatrixintotheExcelspreadsheetwegetthefollowingweightsforthetangencyportfolio:Isthisareasonableportfolio?Why?Weight(%)IBM29.6XON49.4GM-21.4GE42.4Itseemsunreasonablethatweshouldholdsuchextremeportfoliopositions.TheequilibriumargumentsweusedindevelopingtheCAPMsuggestthatthemarketknowssomethingwedon’taboutfutureexpectedreturns!UsetheCAPMasawayofgettingaroundthisproblem:UsetheSML:andthepast(average)returnonthemarkettogetequilibriumestimatesoftheexpectedreturns:fMifirrErrE(%)IBM1.91XON0.99GM1.70GE1.73irEWiththisequilibriumsetofexpectedreturns,wenowgettheportfolioweights:Isthisamorereasonableportfolio?Now,whatisdrivingtheportfolioweights?Whyarethesenotthemarketweights?Whenwouldthesebetheactualmarketweights?Isthistheportfolioyouwanttohold,giventhatyouwereconstrainedtoholdthesefourassets?Weight(%)IBM13.6XON33.3GM16.4GE36.6However,theremaybetimeswhenwethinkthatthemarketisalittlewrongalongoneormoredimensions(averydangerousassumption!)1.First,supposethatIthinkthatthemarkethasunderestimatedtheearningsthatIBMwillannounceinthenextmonth,andthatIBM’sexpectedreturnis2%higherthanthemarketexpects.Also,Ihavenoinformationontheotherthreesecuritiesthatwouldleadmetothinkthattheyaremispriced,andIbelievethatthepastbetas,andresidualstddev’saregoodindicationsoftherelativefuturevalues.2.Inthiscase,wewouldusethesamevarianceandcovarianceinputs,butwouldchangetheexpectedreturnsto:andgivesportfolioweightsof:(%)IBM3.91XON0.99GM1.70GE1.73irEWeight(%)IBM54.1XON17.7GM8.7GE19.53.Alternatively,supposethatIthinktherisk()ofExxonisincreasing.4.IguessthatExxon’swillrisefrom0.59to0.8First,Ishouldrecalculatealmosteverythingusingtheequations:fMifirrErrE2MjiijjiMjiij22222iMiiiiThenewcorrelationswe