参考资料,少熬夜!高二数学精编教案5篇【导读指引】三一刀客最漂亮的网友为您整理分享的“高二数学精编教案5篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!数学高二教案【第一篇】教学目标1.掌握分析法证明不等式;2.理解分析法实质--执果索因;3.提高证明不等式证法灵活性。教学重点分析法教学难点分析法实质的理解教学方法启发引导式教学活动(一)导入新课(教师活动)教师提出问题,待学生回答和思考后点评。(学生活动)回答和思考教师提出的问题。[问题1]我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法?[问题2]能否用比较法或综合法证明不等式:[点评]在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法。(板书课题)设计意图:复习已学证明不等式的方法。指出用比较法和综合法证明不等式的不足之处,激发学生学习新的证明不等式知识的积极性,导入本节课学习内容:用分析法证明不等式。(二)新课讲授尝试探索、建立新知(教师活动)教师讲解综合法证明不等式的逻辑关系,然后提出问题供学生研究,并点评。帮助学生建立分析法证明不等式的知识体系。投影分析法证明不等式的概念。(学生活动)与教师一道分析综合法的逻辑关系,在教师启发、引导下尝试探索,构建新知。[讲解]综合法证明不等式的逻辑关系:以已知条件中的不等式或基本不等式作为结论,逐步寻找它成立的必要条件,直到必要条件就是要证明的不等式。[问题1]我们能不能用同样的思考问题的方式,把要证明的不等式作为结论,逐步去寻找它成立的充分条件呢?[问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?[问题3]说明要证明的不等式成立的理由是什么呢?[点评]从要证明的结论入手,逆求使它成立的充分条件,直到充分条件显然成立为止,从而得出要证明的结论成立。就是分析法的逻辑关系。参考资料,少熬夜![投影]分析法证明不等式的概念。(见课本)设计意图:对比综合法的逻辑关系,教师层层设置问题,激发学生积极思考、研究。建立新的知识;分析法证明不等式。培养学习创新意识。例题示范、学会应用(教师活动)教师板书或投影例题,引导学生研究问题,构思证题方法,学会用分析法证明不等式,并点评用分析法证明不等式必须注意的问题。(学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证。例1求证[分析]此题用比较法和综合法都很难入手,应考虑用分析法。证明:(见课本)[点评]证明某些含有根式的不等式时,用综合法比较困难。此例中,我们很难想到从“”入手,因此,在不等式的证明中,分析法占有重要的位置,我们常用分析法探索证明途径,然后用综合法的形式写出证明过程,这是解决数学问题的一种重要思维方法,事实上,有些综合法的表述正是建立在分析法思索的基础上,分析法的优越性正体现在此。例2已知:,求证:(用分析法)请思考下列证法有没有错误?若有错误,错在何处?[投影]证法一:因为,所以、去分母,化为,就是.由已知成立,所以求证的不等式成立。证法二:欲证,因为只需证,即证,即证因为成立,所以成立。(证法二正确,证法一错误。错误的原因是:虽然是从结论出发,但不是逐步逆战结论成立的充分条件,事实上找到明显成立的不等式是结论的必要条件,所以不符合分析法的逻辑原理,犯了逻辑上的错误。)[点评]①用分析法证明不等式的逻辑关系是:(结论)(步步寻找不等式成立的充分条件)(结论)分析法是“执果索因”,它与综合法的证明过程(由因导果)恰恰相反。②用分析法证明时要注意书写格式。分析法论证“若A则B”这个命题的书写格式是:要证命题B为真,只需证明为真,从而有……这只需证明为真,从而又有…………这只需证明A为真。而已知A为真,故命题B必为真。要理解上述格式中蕴含的逻辑关系。参考资料,少熬夜![投影]例3证明:通过水管放水,当流速相同时,如果水管截面(指横截面,下同)的周长相等,那么截面是圆的水管比截面是正方形的水管流量大。[分析]设未知数,列方程,因为当水的流速相同时,水管的流量取决于水管截面面积的大小,设截面的周长为,则周长为的圆的半径为,截面积为;周长为的正方形边长为,截面积为,所以本题只需证明:证明:(见课本)设计意图:理解分析法与综合法的内在联系,说明分析法在证明不等式中的重要地位。掌握分析法证明不等式,特别重视分析法证题格式及格式中蕴含的逻辑关系。灵活掌握分析法的应用,培养学生应用数学知识解决实际问题的能力。高二数学教案【第二篇】一、教材分析推理是高考的重要的内容,推理包括合情推理与演绎推理,由于解答高考题的过程就是推理的过程,因此本部分内容的考察将会渗透到每一个高考题中,考察推理的基本思想和方法,既可能在选择题中和填空题中出现,也可能在解答题中出现。二、教学目标(1)知识与能力:了解演绎推理的含义及特点,会将推理写成三段论的形式(2)过程与方法:了解合情推理和演绎推理的区别与联系(3)情感态度价值观:了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。三、教学重点难点教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系教学难点:演绎推理的应用四、教学方法:探究法五、课时安排:1课时六、教学过程1.填一填:①所有的金属都能够导电,铜是金属,所以;②太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此;③奇数都不能被2整除,20xx是奇数,所以.2.讨论:上述例子的推理形式与我们学过的合情推理一样吗?3.小结:①概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为____________.要点:由_____到_____的推理。②讨论:演绎推理与合情推理有什么区别?参考资料,少熬夜!③思考:所有的金属都能够导电,铜是金属,所以铜能导电,它由几部分组成,各部分有什么特点?小结:三段论是演绎推理的一般模式:第一段:_________________________________________;第二段:_________________________________________;第三段:____________________________________________.④举例:举出一些用三段论推理的例子。例1:证明函数在上是增函数。例2:在锐角三角形ABC中,,D,E是垂足。求证:AB的中点M到D,E的距离相等。当堂检测:讨论:因为指数函数是增函数,是指数函数,则结论是什么?讨论:演绎推理怎样才能使得结论正确?比较:合情推理与演绎推理的区别与联系?课堂小结课后练习与提高1.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法()A.一般的原理原则;B.特定的命题;C.一般的命题;D.定理、公式。2.因为对数函数是增函数(大前提),而是对数函数(小前提),所以是增函数(结论).上面的推理的错误是()A.大前提错导致结论错;B.小前提错导致结论错;C.推理形式错导致结论错;D.大前提和小前提都错导致结论错。3.下面几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,如果A和B是两条平行直线的同旁内角,则B=180B.由平面三角形的性质,推测空间四面体的性质;.4.补充下列推理的三段论:(1)因为互为相反数的两个数的和为0,又因为与互为相反数且________________________,所以=8.(2)因为_____________________________________,又因为是无限不循环小数,所以是无理数。七、板书设计八、教学反思高二数学优秀教案【第三篇】一、教学内容分析圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用定义XX题,许多时候能以简驭繁、因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来参考资料,少熬夜!熟练的解题”。二、学生学习情况分析我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。三、设计思想由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情、在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率、四、教学目标1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用XX解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。3、借助多媒体辅助教学,激发学习数学的兴趣、五、教学重点与难点:教学重点1、对圆锥曲线定义的理解2、利用圆锥曲线的定义求“最值”3、“定义法”求轨迹方程教学难点:巧用圆锥曲线定义XX高二数学教案【第四篇】一、教学目标知识与技能能正确概述“二面角”、“二面角的平面角”的概念,会做二面角的平面角。过程与方法利用类比的方法推理二面角的有关概念,提升知识迁移的能力。情感态度与价值观营造和谐、轻松的学习氛围,通过学生之间,师生之间的交流、合作和评价达成共识、共享、共进,实现教学相长和共同发展。二、教学重、难点重点“二面角”和“二面角的平面角”的概念。难点“二面角的平面角”概念的形成过程。三、教学过程参考资料,少熬夜!(一)创设情境,导入新课请学生观察生活中的一些模型,多媒体展示以下一系列动画如:1、打开书本的过程;2、发射人造地球卫星,要根据需要使卫星的轨道平面与地球的赤道平面成一定的角度;3、修筑水坝时,为了使水坝坚固耐久,须使水坝坡面与水平面成适当的角度;引导学生说出书本的两个面、水坝面与底面,卫星轨道面与地球赤道面均是呈一定的角度关系,引出课题。(二)师生互动,探索新知学生阅读教材,同桌互相讨论,教师引导学生对比平面角得出二面角的概念平面角:平面角是从平面内一点出发的两条射线(半直线)所组成的图形。二面角定义:从一条直线出发的两个半面所组成的图形,叫作二面角。这条直线叫作二面角的棱,这两个半平面叫作二面角的面。(动画演示)(2)二面角的表示(3)二面角的画法(PPT演示)教师提问:一般地说,量角器只能测量“平面角”(指两条相交直线所成的角。相应地,我们把异面直线所成的角,直线与平面所成的角和二面角,均称为空间角)那么,如何去度量二面角的大小呢?我们以往是如何度量某些角的?教师引导学生将空间角化为平面角。教师总结:(1)二面角的平面角的定义定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。“二面角的平面角”的定义三个主要特征:点在棱上、线在面内、与棱垂直(动画演示)大小:二面角的大小可以用它的平面角的大小来表示。平面角是直角的二面角叫做直二面角。(2)二面角的平面角的作法①点P在棱上—定义法②点P在一个半平面上—三垂线定理法③点P在二面角内—垂面法(三)生生互动,巩固提高(四)生生互动,巩固提高1、判断下列命题的真假:(1)两个相交平面组成的图形叫做二面角。()(2)角的两边分别在二面角的两个面内,则这个角是二面角的平面角。()参考资料,少熬夜!(3)二面角的平面角所在平面垂直于二面角的棱。()2、作出一下面PAC和面ABC的平面角。(五)课堂小结,布置作业小结:通过本节课的学习,你学到了什么?作业:以正方体为模型请找出一个所成角度为四十五度的二面角,并证明。高二数学教案【第五篇】学习目标:1、了解本章的学习的内容以及学习思想方法2、能叙述随机变量的定义3、能说出随机变量与函数的关系,4、能够把一个随机试验结果用随机变量表示重点:能够把一个随机试验结果用随机变量表示难点:随机事件概念的透彻理解及对随机变量引入目的的认识:环节一:随机变量的定义1、通过生活中的一些随机现象,能够概括出随机变量的定义2能叙述随机变量的定义3能说出随机变量与函数的区别与联系一、阅读