参考资料,少熬夜!七年级数学一元一次方程及其解法复习教案精选4篇【导读指引】三一刀客最漂亮的网友为您整理分享的“七年级数学一元一次方程及其解法复习教案精选4篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!元一次方程【第一篇】方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。元一次方程【第二篇】一、教学目标:1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。2、通过观察,归纳的概念3、积累活动经验。二、重点和难点参考资料,少熬夜!重点:归纳的概念难点:感受方程作为刻画现实世界有效模型的意义三、教学过程1、课前训练一(1)如果||=9,则=;如果2=9,则=(2)在数轴上距离原点4个单位长度的数为(3)下列关于相反数的说法不正确的是()A、两个相反数只有符号不同,并且它们到原点的距离相等。B、互为相反数的两个数的绝对值相等C、0的相反数是0D、互为相反数的两个数的和为0(字母表示为、互为相反数则)E、有理数的相反数一定比0小(4)乘积为1的两个数互为倒数,如:(5)如果,则()A、,互为倒数B、,互为相反数C、,都是0D、,至少有一个为0(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程()A、B、C、D、002、由课本P149卡通图画引入新课3、分组讨论P149两个练习4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()A、+25=310B、+(+25)=310C、2[+(+25)]=310D、[+(+25)]2=310课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回元。已知每个笔记本比练习本贵元,求每个练习本多少元?解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:6、归纳方程、的概念7、随堂练习PO1518、达标测试(1)下列式子中,属于方程的是()A、B、C、D、(2)下列方程中,属于的是()A、B、C、D、参考资料,少熬夜!(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?解:设甲队胜了场,则平了场,依题意可列得方程:解得=答:甲队胜了场,平了场。(4)根据条件“一个数比它的一半大2”可列得方程为(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为四、课外作业P151习题元一次方程【第三篇】再探实际问题与一元一次方程-----销售中的盈亏(第一课时)一。教学任务分析教学目标知识技能使学生根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法。教学思考1.会将实际问题转化为数学问题,通过列方程解决问题。2.体会数学的应用价值。解决问题会设未知数,并能利用问题中的相等关系列方程,通过分析解决销售中的。盈亏问题,进一步了解用方程解决实际问题的基本过程。情感态度通过学习更加关注生活,增强用数学的意识,从而激发学习数学的热情。重点让学生知道商品销售中的盈亏的算法。难点弄清商品销售中的“进价”“售价”及“利润””利润率”的含义和它们之间的等量关系。二。课前准备参考资料,少熬夜!教具学具补充材料课件铺垫练习课堂练习拓广延伸练习三.教学过程设想教师活动学生活动设计意图一。创设情境,引入新课前面我们结合实际问题讨论了如何分析数量关系,利用相等关系列方程以及如何解方程,可以看出方程是分析和解决问题的一种很有用的数学工具,本节课我们就来探究如何用一元一次方程解决实际问题。学生回忆、猜想激起学生主动回忆、联想和学习欲望。二。师生互动,课堂探究(出示课件)教师先介绍图片,再提问问题一:某商店在某时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖出这两件衣服总的是盈利还是亏损,或是不盈不亏?请同学们估算卖这两件衣服的盈亏情况。学生观察、合作交流、讨论、发表看法培养学生学会合作交流,善于听取他人见解和敢于发言,让学生大体估算身边的实际问题,可激发学习兴趣和探究的主动性。问题二:渐进给出,教师因情引导,并板书利润=进价×利润率如果一件商品的进价是40元,(1)如果卖出后盈利25%,那么该商品的利润怎样算?(2)如果卖出后亏损25%,那么该商品的利润怎样算?(3)那么利润、进价、利润率有什么关系?学生合作交流参考资料,少熬夜!讨论、归纳、发表意见让学生结合生活经验,由身边熟悉实际的问题构建数学模型,培养学生会用数学方法解决实际问题,和由特殊到一般,概括能力、学生感到好学,进而乐学,从感性上自然地熟悉销售中的等量关系,并逐步突破重难点,为以后问题打下基础。问题三:渐近给出,教师因情引导,并板书利润=售价-进价或利润+进价=售价(1)小卖部老板的面包进价为元/个,卖给同学们1元/个,老板获取利润怎样算?(2)因而利润、售价、进价的关系又如何呢?问题四:教师逐步给出,并引导学生根据问题二、三中的等量关系来回答,解答,最后给出解题步骤,并板书。思考:盈利25%、亏损25%的意义?引导学生得出:盈利25%,即这件商品的销售利润值(售价—进价)是商品进价的25%,亏损25%,即这件商品的销售亏损值(进价—售价)是商品进价的25%。问题①:你能从大体上估算卖这两件衣服的盈亏情况吗?问题②:如何说明你的估算是正确的呢?问题③:如何判断是盈还是亏?问题④:两件衣服的进价、售价分别是多少?如何设未知数?相等关系是什么?问题⑤:商品销售中的进价、售价、利润、利润率有何关系?巡视学生完成情况,给予辅导,最后给出解题步骤。三。归纳总结。学生合作、交流、讨论、思考、补充解答过程让学生学会回顾已有知识,学会分析解决实际问题,参考资料,少熬夜!养成好动脑、动手、合作学习的习惯,体验成功感,以突破重难点,达到教学目标。四。知识拓展,教师给出问题:(1)汕头琴行同时出售两台不同钢琴,每台售价为960元,其中一台盈利20%,另一台亏损20%。这次琴行是赢利还是亏损,或是不盈不亏?(2)某商店对购买大件商品实行分期付款,明明的爸爸买了一台9000元的电脑,第一个月付款30℅,以后每月付款450元,问明明的爸爸需几个月付清余下的款?学生独立思考并完成、展示及时巩固所学知识五。回顾与小结1.能理解商品销售中的基本概念及相等关系,熟练地应用“利润=售价-进价、利润=进价×利润率”来寻找商品中的相等关系2.能联系以前研究过的问题,加深理解用一元一次方程解决实际问题的一般步骤。六。拓展延伸题。(略)学生看黑板、屏幕、教材、记录回顾所学知识,学会梳理、概括、总结。七。作业布置教材第97页第3、题学生记录对已学知识强化巩固元一次方程【第四篇】教学目标1.使学生正确认识含有字母系数的一元一次方程。2.使学生掌握含有字母系数的一元一次方程的解法。3.使学生会进行简单的公式变形。4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。教学重点:参考资料,少熬夜!(1)含有字母系数的一元一次方程的解法。(2)公式变形。教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号。(2)移项——未知项移到等号一边常数项移到等号另一边。注意:移项要变号。(3)合并同类项——提未知数。(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数。引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。2.含有字母系数的一元一次方程的解法教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:参考资料,少熬夜!ax=b(a≠0).由学生讨论这个解法的思路对不对,解的过程对不对?在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系。含有字母系数的一元一次方程的解法和学过的含有数字系数的一元一次方程的解法相同。(即仍需要采用去分母、去括号、移项、合并同类项、方程两边同除以未知数的系数等步骤。)特别注意:用含有字母的式子去乘或者除方程的两边,这个式子的值不能为零。3.讲解例题例1解方程ax+b2=bx+a2(a≠b).解:移项,得ax-bx=a2-b2,合并同类项,得(a-b)x=a2-b2.∵a≠b,∴a-b≠0.x=a+b.注意:1.在没有特别说明的情况下,一般x、y、z表示未知数,a、b、c表示已知数。2.在未知项系数化为1这一步是最易出错的一步,一定要说明未知项系数(式)不为零之后才可以方程两边同除以未知项系数(式).3.方例2、解方程分析:去分母时,要方程两边同乘ab,而需ab≠0,那么题目中有没有这个条件呢?有隐含条件a≠0,b≠0.解:b(x-b)=2ab-a(x-a)(a+b≠0).bx-b2=2ab-ax+a2(去分母注意“2”这项不要忘记乘以最简公分母。)ba+ax=a2+2ab+b2(a+b