自相关性SerialCorrelation一、自相关性二、自相关性的后果三、自相关性的检验四、具有自相关性模型的估计五、案例如果模型的随机误差项违背了互相独立的基本假设的情况,称为自相关性。普通最小二乘法(OLS)要求计量模型的随机误差项相互独立或序列不相关。一、自相关性1、自相关的概念对于模型ikikiiiXXXY22110i=1,2,…,n随机误差项互不相关的基本假设表现为:Covij(,)0i≠j,i,j=1,2,…,n如果对于不同的样本点,随机误差项之间不再是不相关的,而是存在某种相关性,则认为出现了自相关性。在其他假设仍成立的条件下,序列相关即意味着0)(jiE或nnTENNE11)(21121nnnE)()()()(21121nnnEEEE21121)()(nnnEE2112)()(nnEEΩ2I2(2.5.1)称为一阶自相关,或自相关(autocorrelation)。这是最常见的一种自相关问题。自相关往往可写成如下形式:如果仅存在Eii()10i=1,2,…,n-1(2.5.2)ttt111(2.5.3)其中:被称为自协方差系数(coefficientofautocovariance)或一阶自相关系数(first-ordercoefficientofautocorrelation)。2、自相关产生的原因(1)惯性大多数经济时间数据都有一个明显的特点,就是它的惯性。GDP、价格指数、生产、就业与失业等时间序列都呈周期性,如周期中的复苏阶段,大多数经济序列均呈上升势,序列在每一时刻的值都高于前一时刻的值,似乎有一种内在的动力驱使这一势头继续下去,直至某些情况(如利率或课税的升高)出现才把它拖慢下来。(2)设定偏误:模型中遗漏了显著的变量例如:如果对牛肉需求的正确模型应为Yt=0+1X1t+2X2t+3X3t+t其中:Y=牛肉需求量,X1=牛肉价格,X2=消费者收入,X3=猪肉价格。如果模型设定为:Yt=0+1X1t+2X2t+vt那么该式中的随机误差项实际上是:vt=3X3t+t,于是在猪肉价格影响牛肉消费量的情况下,这种模型设定的偏误往往导致随机项中有一个重要的系统性影响因素,使其呈自相关性。(3)设定偏误:不正确的函数形式例如:如果边际成本模型应为:Yt=0+1Xt+2Xt2+t其中:Y=边际成本,X=产出。但建模时设立了如下模型:Yt=0+1Xt+vt因此,由于vt=2Xt2+t,,包含了产出的平方对随机项的系统性影响,随机项也呈现自相关性。(4)蛛网现象例如,农产品供给对价格的反映本身存在一个滞后期:供给t=0+1价格t-1+t意味着,农民由于在年度t的过量生产(使该期价格下降)很可能导致在年度t+1时削减产量,因此不能期望随机干扰项是随机的,往往产生一种蛛网模式。(5)数据的“编造”例如,季度数据来自月度数据的简单平均,这种平均的计算减弱了每月数据的波动而引进了数据中的匀滑性,这种匀滑性本身就能使干扰项中出现系统性的因素,从而出现自相关。还有就是两个时间点之间的“内插”技术往往导致随机项的自相关性。二、自相关性的后果1、参数估计量非有效•OLS参数估计量仍具无偏性•OLS估计量不具有有效性•在大样本情况下,参数估计量仍然不具有渐近有效性,这就是说参数估计量不具有一致性2、变量的显著性检验失去意义在关于变量的显著性检验中,当存在自相关时,参数的OLS估计量的方差增大,标准差也增大,因此实际的t统计量变小,从而接受原假设i=0的可能性增大,检验就失去意义。采用其它检验也是如此。3、模型的预测失效区间预测与参数估计量的方差有关,在方差有偏误的情况下,使得预测估计不准确,预测精度降低。所以,当模型出现自相关性时,它的预测功能失效。三、自相关性的检验1、基本思路•自相关性检验方法有多种,但基本思路是相同的。•首先采用普通最小二乘法估计模型,以求得随机误差项的“近似估计量”:~()eyyiiils0•然后,通过分析这些“近似估计量”之间的相关性,以达到判断随机误差项是否具有自相关性的目的。2、图示法由于残差~ei可以作为i的估计,因此如果i存在序列相关,必然会由残差项~ei反映出来,因此可利用~ei的变化图形来判断随机项的序列相关性。2、解析法(1)回归检验法以~ei为被解释变量,以各种可能的相关量,诸如以~ei1、~ei2、~ei2等为解释变量,建立各种方程:~~eeiii1i=2,…,n~~~eeeiiii1122i=3,…,n…•具体应用时需要反复试算。•回归检验法的优点是:一旦确定了模型存在自相关性,也就同时知道了相关的形式;它适用于任何类型的自相关性问题的检验。对各方程估计并进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在自相关性。(2)杜宾-瓦森(Durbin-Watson)检验法•D-W检验是杜宾(J.Durbin)和瓦森(G.S.Watson)于1951年提出的一种检验序列自相关的方法。•该方法的假定条件是:(1)解释变量X非随机;(2)随机误差项i为一阶自回归形式:i=i-1+i(3)回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式:Yi=0+1X1i+kXki+Yi-1+i(4)回归含有截距项;(5)没有缺落数据。Durbin和Watson假设:0:0H,即i不存在一阶自回归;0:1H,即i存在一阶自回归并构如下造统计量:DWeeeiiiniin..(~~)~12221(2.5.5)•D.W.统计量•该统计量的分布与出现在给定样本中的X值有复杂的关系,因此其精确的分布很难得到。•但是,Durbin和Watson成功地导出了临界值的下限dL和上限dU,且这些上下限只与样本的容量n和解释变量的个数k有关,而与解释变量X的取值无关。•检验步骤①计算该统计量的值,②根据样本容量n和解释变量数目k查D.W.分布表,得到临界值dL和dU,③按照下列准则考察计算得到的D.W.值,以判断模型的自相关状态。若0D.W.dl则存在正自相关dlD.W.du不能确定duD.W.4-du无自相关4-duD.W.4-dl不能确定4-dlD.W.4存在负自相关•可以看出,当D.W.值在2左右时,模型不存在一阶自相关。证明:展开D.W.统计量:DWeeeeeiiiiinininiin..~~~~~2121222212(2.5.6)当n较大时,~,~,~eeeiiniiniin2212221大致相等,则(2.5.6)可以化简为:)1(2)~~~1(2..1221niiniiieeeWD式中,niiniiiniiniiieeeeee22211221~~~~~~为一阶自相关模型ttt111的参数估计,如果存在完全一阶正相关,即=1,则D.W.0如果存在完全一阶负相关,即=-1,则D.W.4如果完全不相关,即=0,则D.W.2(1)从判断准则看到,存在一个不能确定的D.W.值区域,这是这种检验方法的一大缺陷。(2)D.W.检验虽然只能检验一阶自相关,但在实际计量经济学问题中,一阶自相关是出现最多的一类自相关;(3)经验表明,如果不存在一阶自相关,一般也不存在高阶自相关。所以在实际应用中,对于自相关问题一般只进行D.W.检验。•注意:四、具有自相关性模型的估计•如果模型被检验证明存在自相关性,则需要发展新的方法估计模型。•最常用的方法是广义最小二乘法(GLS:Generalizedleastsquares)、一阶差分法(First-OrderDifference)和广义差分法(GeneralizedDifference)。1、广义最小二乘法•对于模型Y=XB+N(2.5.7)如果存在自相关,同时存在异方差,即有ECovE()()()021121212212•设=DD’用D-1左乘(2.5.7)两边,得到一个新的模型:D-1Y=D-1XB+D-1N(2.5.8)即Y*=X*B+N*该模型具有同方差性和随机误差项互相独立性。EE()()**DD11DDDWDDDDDI111211212E()•于是,可以用OLS法估计模型(2.5.8),得()****XXXY1YΩXXΩXYDDXXDDX11111111)()((2.5.9)•这就是原模型(2.5.7)的广义最小二乘估计量(GLSestimators),是无偏的、有效的估计量。•如何得到矩阵?仍然是对原模型(2.5.7)首先采用普通最小二乘法,得到随机误差项的近似估计量,以此构成矩阵的估计量,即~~~~~~~~~~~~~~~eeeeeeeeeeeeeeennnnn1212121222122•可行的广义最小二乘法(FGLS,FeasibleGeneralizedLeastSquares)文献中常见的术语如果能够找到一种方法,求得到Ω的估计量,使得GLS能够实现,都称为FGLS前面提出的方法,就是FGLS2、一阶差分法一阶差分法是将原模型iiiXY10i=1,2,…,n变换为11iiiiXYi=2,…,n(2.5.10)其中1iiiYYY•即使对于非完全一阶正相关的情况,只要存在一定程度的一阶正相关,差分模型就可以有效地加以克服。•如果原模型存在完全一阶正自相关,即在i=i-1+i中,=1。(2.5.10)可变换为:Yi=1Xi+I由于i不存在自相关,该差分模型满足应用OLS法的基本假设,用OLS法估计可得到原模型参数的无偏的、有效的估计量。3、广义差分法模型(2.5.12)为广义差分模型,该模型不存在自相关问题。采用OLS法估计可以得到原模型参数的无偏、有效的估计量。广义差分法可以克服所有类型的自相关带来的问题,一阶差分法是它的一个特例。如果原模型存在:iiilili1122(2.5.11)可以将原模型变换为:ililiilliliiXXXYYY)()1(1111011illn12,,,(2.5.12)4、随机误差项相关系数的估计•应用广义差分法,必须已知不同样本点之间随机误差项的相关系数1,2,…,l。实际上,人们并不知道它们的具体数值,所以必须首先对它们进行估计。•常用的方法有:(1)科克伦-奥科特(Cochrane-Orcutt)迭代法。(2)杜宾(durbin)两步法(1)科克伦-奥科特迭代法首先,采用OLS法估计原模型Yi=0+1Xi+i得到的随机误差项的“近似估计值”,并以之作为观测值采用OLS法估计下式i=1i-1+2i-2+Li-L+i得到,,,12l,作为随机误差项的相关系数12,,,l的第一次估计值。其次,将上述,,,12l代入广义差分模型ililiilliliiXXXYYY)()1(1111011illn12,,,并对之进行OLS估计,得到0ˆˆ、1ˆˆ。再次,将0ˆˆ、1ˆˆ代回原模型,计算出原模型随机误差项的新的“近拟估