第三章经典单方程计量经济学模型:多元回归•多元线性回归模型•多元线性回归模型的参数估计•多元线性回归模型的统计检验•多元线性回归模型的预测•回归模型的其他形式•回归模型的参数约束§3.1多元线性回归模型一、多元线性回归模型二、多元线性回归模型的基本假定一、多元线性回归模型多元线性回归模型:表现在线性回归模型中的解释变量有多个。一般表现形式:ikikiiiXXXY22110i=1,2…,n其中:k为解释变量的数目,j称为回归参数(regressioncoefficient)。习惯上:把常数项看成为一虚变量的系数,该虚变量的样本观测值始终取1。这样:模型中解释变量的数目为(k+1)ikikiiiXXXY22110也被称为总体回归函数的随机表达形式。它的非随机表达式为:kikiikiiiiXXXXXXYE2211021),,|(方程表示:各变量X值固定时Y的平均响应。j也被称为偏回归系数,表示在其他解释变量保持不变的情况下,Xj每变化1个单位时,Y的均值E(Y)的变化;或者说j给出了Xj的单位变化对Y均值的“直接”或“净”(不含其他变量)影响。总体回归模型n个随机方程的矩阵表达式为μXβY其中)1(212221212111111knknnnkkXXXXXXXXXX1)1(210kkβ121nnμ样本回归函数:用来估计总体回归函数kikiiiiXXXYˆˆˆˆˆ22110其随机表示式:ikikiiiieXXXYˆˆˆˆ22110ei称为残差或剩余项(residuals),可看成是总体回归函数中随机扰动项i的近似替代。样本回归函数的矩阵表达:βXYˆˆ或eβXYˆ其中:kˆˆˆˆ10βneee21e二、多元线性回归模型的基本假定假设1,解释变量是非随机的或固定的,且各X之间互不相关(无多重共线性)。假设2,随机误差项具有零均值、同方差及不序列相关性0)(iE22)()(iiEVar0)(),(jijiECovnjiji,,2,1,假设3,解释变量与随机项不相关0),(ijiXCov假设4,随机项满足正态分布),0(~2Nikj,2,1上述假设的矩阵符号表示式:假设1,n(k+1)矩阵X是非随机的,且X的秩=k+1,即X满秩。假设2,0)()()(11nnEEEEμnnEE11)(μμ21121nnnEI22211100)var(),cov(),cov()var(nnn假设3,E(X’)=0,即0)()()(11iKiiiiiKiiiiEXEXEXXE假设4,向量有一多维正态分布,即),(~2I0μN同一元回归一样,多元回归还具有如下两个重要假设:假设5,样本容量趋于无穷时,各解释变量的方差趋于有界常数,即n∞时,jjjijiQXXnxn22)(11或Qxxn1其中:Q为一非奇异固定矩阵,矩阵x是由各解释变量的离差为元素组成的nk阶矩阵knnkxxxx1111x假设6,回归模型的设定是正确的。