二次函数数学教案精编5篇

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!二次函数数学教案精编5篇【导读指引】三一刀客最漂亮的网友为您整理分享的“二次函数数学教案精编5篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!九年级数学上册二次函数教案2021模板11.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念。2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解。重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题。难点一元二次方程及其二次项系数、一次项系数和常数项的识别。活动1复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式。(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=13.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念。活动2探究新知根据题意列方程。1.教材第2页问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程。2.教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数。参考资料,少熬夜!提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念。1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程。2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程。例2教材第3页例题。例3以-2为根的一元二次方程是()+2x-1=0=0+x+2=0+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等。练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项。(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题。4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,参考资料,少熬夜!则k的值为________.答案:≠1;2.略;3.略;=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题第1~7题。初中数学二次函数教案2教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。难点:各种性质的应用。教学工具投影仪教学过程创设情境,揭示课题函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?参考资料,少熬夜!六、布置作业:习题1-7第4,5,6题。课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业:习题1-7第4,5,6题。板书二次函数教学教案参考3教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。3.通过学生共同观察和讨论,培养大家的合作交流意识。(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。2.具有初步的创新精神和实践能力。教学重点1.体会方程与函数之间的联系。2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。教学难点1.探索方程与函数之间的联系的过程。2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。教学方法讨论探索法。参考资料,少熬夜!教具准备投影片二张第一张:(记作§)第二张:(记作§)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。二次函数教案4二次函数的图象与性质1.画出函数=2x2-3x的图象,说明这个函数具有哪些性质。2.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。(1)=3x2+2x;(2)=-x2-2x(3)=-2x2+8x-8(4)=12x2-4x+3板书设计1、画函数=ax2+bx+c(a≠0)的图象。(列表时,应以对称轴为中心,对称地选取自变量的值,求出相应的函数值。)2、二次函数=ax2+bx+c(a≠0),当a>0时,开口向上,当a<0时,开口向下。对称轴是x=-b2a,顶点坐标是(-b2a,4ac-b24a)(最值与抛物线的开口方向及顶点的纵坐标有关。)课后反思在本节教学中,教学仍从回顾上节人手,使学生掌握二次函数是由如何平移得来,并熟练掌握二次函数图象的开口方向、对称轴和顶点坐标及有关性质。在此基础上,引导学生思考二次函数=ax2+bx+c(a≠0)图像的开口方向、对称轴和顶点坐标?这样激起学生的求知欲望,能进行有目的探究活动,学生变被动为主动,学习方式发生了改变。这节课学生既动手又动脑,体验到学习知识的乐趣。初二二次函数教案5一。学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。参考资料,少熬夜!2.了解二次函数关系式,会确定二次函数关系式中各项的系数。二。知识导学(一)情景导学1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是。2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?设长方形的长为x米,则宽为米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为.3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽米,那么总费用y为多少元?在这个问题中,地板的费用与有关,为元,踢脚线的费用与有关,为元;其他费用固定不变为元,所以总费用y(元)与x(m)之间的函数关系式是。(二)归纳提高。上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?一般地,我们称表示的函数为二次函数。其中是自变量,函数。一般地,二次函数中自变量x的取值范围是,你能说出上述三个问题中自变量的取值范围吗?(三)典例分析例1、判断:下列函数是否为二次函数,如果是,指出其中常数的值。(1)y=1―(2)y=x(x-5)(3)y=-x+1(4)y=3x(2-x)+3x2(5)y=(6)y=(7)y=x4+2x2-1(8)y=ax2+bx+c例2.当k为何值时,函数为二次函数?例3.写出下列各函数关系,并判断它们是什么类型的函数.⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;⑵圆的面积y(cm2)与它的周长x(cm)之间的函数关系;⑶某种储蓄的年利率是%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;⑷菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.三。巩固拓展1.已知函数是二次函数,求m的值。2.已知二次函数,当x=3时,y=-5,当x=-5时,求y的`值.3.一个长方形的长是宽的倍,写出这个长方形的面积S与宽x之间函数关系式。参考资料,少熬夜!4.一个圆柱的高与底面直径相等,试写出它的表面积S与底面半径r之间的函数关系式5.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.6.一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长m.⑴求隧道截面的面积S(m2)关于上部半圆半径r(m)的函数关系式;⑵求当上部半圆半径为2m时的截面面积.(π取,结果精确到m2)课堂练习:1.判断下列函数是否是二次函数,若是,请指出它的二次项系数、一次项系数、常数项。(1)y=2-3x2;(2)y=x2+2x3;(3)y=;(4)y=.2.写出多项式的对角线的条数d与边数n之间的函数关系式。3.某产品年产量为30台,计划今后每年比上一年的产量增长x%,试写出两年后的产量y(台)与x的函数关系式。4.圆柱

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功