小学数学教案三角形分类(数学三角形的分类教案)(精编3篇)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!小学数学教案三角形分类(数学三角形的分类教案)(精编3篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“小学数学教案三角形分类(数学三角形的分类教案)(精编3篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!关于小学数学教案范文3角形分类(数学三角形的分类教案1教材版本:人教版四年级下册第四单元《三角形的分类》教学目标:1、能够按三角形的内角不同对三角形进行分类,掌握锐角三角形、直角三角形、钝角三角形的特征。2、认识等腰三角形、等边三角形,掌握它们的特征。3、通过探究过程,体验独立思考、小组学习、动手操作的学习方法。培养学生的观察、分析、比较、抽象概括能力。教学重点:理解三角形的意义和按角、边的角度,把三角形分类。教学难点:能够区别掌握各类三角形的特征以及区分各类三角形之间的关系学情分析:学生第一学段认识角、直角、锐角、钝角、平角、直角。可见四年级的学生已经具备了一定的平面图形的知识,学习这一部分内容,对他们来说比较轻松和顺利。所以,教师可充分放手让学生自学,学生可以通过自学、讨论,动手操作来掌握本节课的知识点。学生亲自体验探索知识的形成过程,在体验中形成概念。教学准备:白板多媒体,一副三角板,每个学习小组七个三角形。教学过程:一、复习旧知,导入新课1、复习旧知(1)之前都学过哪些角?(2)屏幕上是什么角?(白板上有一个锐角,将角旋转至90度,至钝角,分别追问是什么角?)(3)如果在这个角的两条边上任取两个点,并连接起来,擦掉多余的部分,是个什么图形?(4)你对三角形都有哪些了解?2、导入新课(1)展示白板上的7个三角形,它们一样吗?什么都不一样?(2)其实众多的三角形里有很多也是同一类的。今天老师和大家一起探究三角形的分类。板书课题:三角形的分类参考资料,少熬夜!(设计意图:通过对旧知识的复习,帮助学生系统思考,营造良好的学习氛围,让学生感受到给三角形分类的必要性。为下面探究新知做好知识和氛围的准备)二、合作交流,探究新知1、探究三角形的分类(1)独立思考,你准备怎么分类?。(2)小组交流,按照你的想法把白板上的7个三角形进行分类。(3)小组合作,教师深入指导。分好的同学交流思想。(4)汇报分类结果a按角度分类:1号4号7号分为一类;2、5分为一类:3、6号分为一类。b按边分类:1、2、3为一类;4、5、6、为一类。7单独为一类。2、教学按角分类(1)学生说明为什么按角分把三角形分为三类?这三类各有什么特征?(教师及时板书重点内容)(2)根据这三类三角形角的特征,给三角形起名字。(3)一个三角形最多有几个锐角?最少有几个锐角?最多几个直角?最多有几个钝角?(4)知识小结,及时练习让生随便画三角形,并说明自己画的什么三角形,为什么?3、教学等腰三角形和等边三角形(1)学生说明第二种分法的依据,你是怎么知道4号、5号、6号三角形有两条边相等,而7号三条边都相等?(小组讨论、交流、操作、汇报)(设计意图:学生已经具备了用尺子量、对折比较等多种线段、图形等对比的方法,拓展学生思维,激发动手兴趣,提高操作能力。)(2)学生自学白板上的内容。并用三角尺说出对应的名称。(3)等腰三角形和等边三角形都是因特殊的边的关系而名,你们猜一猜,它们的角又有怎样的。特殊性呢?(小组交流,合作探究)(5)汇报等腰三角形和等边三角形里,角之间的关系,并说明验证方法。(6)等腰三角形和等边三角形之间又有怎样的关系呢?设计意图:学生展示小组的学习成果,既有结果的展示,更有过程的展示,让参与的同学都能感受到合作学习的愉快和成功。同时也教了其他孩子一种学习方法。4、探究用图形表示三角形的分类(展台展示学生作品)(1)自学课本,从图上你发现了什么?用自己的语言描述出三角形、锐角三角形、直角三角形、钝角三角形之间的关系。(2)合上课本,自己在练习本上再画一遍关系图。参考资料,少熬夜!(3)用同样的方法,尝试把三角形从边的角度分类后的三类三角形的关系也用椭圆图表示出来。设计意图:通过自学课本,发现知识,验证知识,总结知识,并会利用知识的迁移解决新的问题。让学生明白自学的方向、方法、目的,锻炼并提高学生的自学能力,同时学生的逻辑思维,抽象概括能力也得到了提高。让学生在合作中发展,在发展中合作。使学生成为真正的学习主人。)三、课堂小结,知识拓展通过刚才的探究学习,已经明白了三角形按角分,分为三类,按边分,也分为三类。如果把两方面同时考虑,又分为几类呢?(设计意图:这个问题以表格的形式出现,学生通过观察分析,把7个三角形放在相应的位置。探究出被分为7类。并非如表格所示的9类。通过这个设计,让学生明确分类首先要确定角度,同时感受解决问题的多样性和灵活性严密性,发展学生的思维。明确数学的严密性。)四、交流收获,总结质疑五、课堂小结在今天学习三角形分类的过程中,你们都有哪些收获想和大家共同分享?或者还有什么不明白的地方都可以拿出来大家一起解决。板书设计:三角形的分类按角分按边分锐角三角形(三个锐角)不等边三角形(三边不等)直角三角形(一个直角)等腰三角形(两边相等)钝角三角形(一个钝角)等边三角形(三边相等)等边三角形是特殊的等腰三角形初中数学三角形教案2学习目标:1.经历探索直角三角形中边角关系的过程。理解正切的意义和与现实生活的联系。2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算。学习重点:1.从现实情境中探索直角三角形的边角关系。2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。学习难点:理解正切的意义,并用它来表示两边的比。学习方法:引导—探索法。更多免费教案下载绿色圃中学习过程:一、生活中的数学问题:参考资料,少熬夜!1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?二、直角三角形的边与角的关系(如图,回答下列问题)⑴Rt△AB1C1和Rt△AB2C2有什么关系?⑵有什么关系?⑶如果改变B2在梯子上的位置(如B3C3)呢?⑷由此你得出什么结论?三、例题:例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB的值。四、随堂练习:1、如图,△ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度。(结果精确到)3、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米。4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.5、如图,Rt△ABC是一防洪堤背水坡的横截面图,斜坡AB的长为12m,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:的斜坡AD,求DB的长。(结果保留根号)五、课后练习:1、在Rt△ABC中,∠C=90°,AB=3,BC=1,则tanA=_______.2、在△ABC中,AB=10,AC=8,BC=6,则tanA=_______.3、在△ABC中,AB=AC=3,BC=4,则tanC=______.4、在Rt△ABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a=24,c=25,求tanA、tanB的值。5、若三角形三边的比是25:24:7,求最小角的正切值。6、如图,在菱形ABCD中,AE⊥BC于E,EC=1,tanB=,求菱形的边长和四边形AECD的周长。7、已知:如图,斜坡AB的倾斜角a,且tanα=,现有一小球从坡底A处以20cm/s的速度向坡顶B处移动,则小球以多大的速度向上升高?8、探究:⑴、a克糖水中有b克糖(ab0),则糖的质量与糖水质量的比为_______;若再添加c克糖(c0),则糖的质量与糖水的质量的比为________.生活常识告诉我们:添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个参考资料,少熬夜!不等式:____________.⑵、我们知道山坡的坡角越大,则坡越陡,联想到课本中的结论:tanA的值越大,则坡越陡,我们会得到一个锐角逐渐变大时,它的正切值随着这个角的变化而变化的规律,请你写出这个规律:_____________.⑶、如图,在Rt△ABC中,∠B=90°,AB=a,BC=b(ab),延长BA、BC,使AE=CD=c,直线CA、DE交于点F,请运用(2)中得到的规律并根据以上提供的几何模型证明你提炼出的不等式。§从梯子的倾斜程度谈起(第二课时)学习目标:1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义。2.能够运用sinA、cosA表示直角三角形两边的比。3.能根据直角三角形中的边角关系,进行简单的计算。4.理解锐角三角函数的意义。学习重点:1.理解锐角三角函数正弦、余弦的意义,并能举例说明。2.能用sinA、cosA表示直角三角形两边的比。3.能根据直角三角形的边角关系,进行简单的计算。学习难点:用函数的观点理解正弦、余弦和正切。学习方法:探索——交流法。学习过程:一、正弦、余弦及三角函数的定义想一想:如图(1)直角三角形AB1C1和直角三角形AB2C2有什么关系?(2)有什么关系?呢?(3)如果改变A2在梯子A1B上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B的倾斜角的大小呢?你由此又可得出什么结论?请讨论后回答。二、由图讨论梯子的倾斜程度与sinA和cosA的关系:三、例题:例1、如图,在Rt△ABC中,∠B=90°,AC==,求BC的长。例2、做一做:如图,在Rt△ABC中,∠C=90°,cosA=,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达。四、随堂练习:1、在等腰三角形ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.参考资料,少熬夜!2、在△ABC中,∠C=90°,sinA=,BC=20,求△ABC的周长和面积。3、在△ABC中。∠C=90°,若tanA=初中数学三角形教案3一、教学目标知识目标:1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.能力目标:2.进一步培养学生类比的数学思想.情感目标:3.通过学习,养成严谨科学的学习品质二、教学重点、难点、疑点及解析1.重点是性质定理的应用.2.难点是相似三角形的判定与性质等有关知识的综合运用.3.疑点是要向学生讲清什么是对应高、对应中线、对应角平分线,它不是一个三角形中两条高、中线、角平分线的比等于相似比.另外,在定理的证明过程中,要向学生讲清由已知两三角形相似(性质)去证另外两个三角形相似(判定)的思维过程,即相似三角形性质与判定的综合运用.三、教学方法新授课.四、教学过程(一)复习提问1.三角形中三种主要线段是什么?2.到目前为止,我们学习了相似三角形的哪些性质?3.什么叫相似比?(二)讲解新课根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的'其他性质(见图5-45,图5-46,图5-47).建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.性质定理1:相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.∵△ABC∽△ABC,ADBC,ADBC,教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.分析示意图:结论∽(欠缺条件)∽(已知)参考资料,少熬夜!∵△ABC∽△ABC,BM=MC,BM=MC,∵△ABC∽△ABC,2,4,以上两种情况的证明可由学生完成.小结:本节主要学习了性质

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功