第三章简单的国民收入决定模型第一节宏观经济均衡及其实现第二节总支出构成及其决定第三节均衡国民收入的决定第四节乘数理论第一节宏观经济均衡及其实现一、两类宏观经济变量总供给(总收入)是一个经济在一定时期内所生产出来的所有物品和劳务的数量。总需求(总支出)是指在价格和收入既定条件下消费者、企业、政府和国外愿意支出的数量。二、总需求决定总供给Y≡总收入≡总支出萨伊定律:供给创造自身的需求凯恩斯定律:需求创造自身的供给三、宏观经济均衡的实现过程社会总产出或国民收入决定于社会总支出。Y=C+I(C+I=总支出[AE])Y——收入C+I——计划消费与计划投资[总支出]AE=Y[总收入]AE=C[计划消费]+I[计划投资]Y=C[计划消费]+S[计划储蓄]I=S计划投资=计划储蓄均衡产出或收入的条件AEY=AEY100045。100AEAEY100045。100Y–AE=IU(非计划存货)⊿IU0⊿IU0E第二节总支出构成及其决定一、凯恩斯的消费函数消费函数概念消费函数[ConsumptionFunction]——消费与收入之间的依存关系。递增函数。C=C(Y)基本思想第一,实际消费支出是实际收入的稳定函数;第二,这里所说的收入是指现期绝对实际收入水平;第三,0MPC1;第四,MPCAPC;消费倾向平均消费倾向[AveragePropensitytoConsume]——总消费在总收入中所占比例。边际消费倾向[MarginalPropensitytoConsume]——增加的消费在增加的收入中所占比例。⊿C⊿YdCdYMPC()=或=CYAPC=自发消费[AutonomousConsumption]——不取决于收入的消费。引致消费[InducedConsumption]——随收入变动而变动的消费。—自发消费(常数);—边际消费倾向,Y—引致消费。C=+Y[0,0]若消费函数为线性,为常数。自发消费与引致消费CY0C=C(Y)45。消费曲线[边际消费倾向递减]CYD0C=+Y45。线性消费函数二、储蓄函数与储蓄倾向储蓄函数概念储蓄函数[SavingFunction]——储蓄与收入之间的依存关系。递增函数。S=S(Y)储蓄倾向平均储蓄倾向[AveragePropensitytoSave]——总储蓄在总收入中所占比例。边际储蓄倾向[MarginalPropensitytoSave]——增加的储蓄在增加的收入中所占比例。⊿S⊿YdSdYMPS=或=SYAPS=S0S=S(Y)Y储蓄曲线[边际储蓄倾向递增]S0S=-+(1-)YS=Y-C=Y-(+Y)=-+(1-)YY线性储蓄函数-三、消费函数与储蓄函数的关系∵C=+YS=-+(1-)Y∴C+S=+Y-+Y-Y=Y∵Y=C+S∴APC+APS=1∵⊿Y=⊿C+⊿S∴MPC+MPS=1消费函数与储蓄函数的关系CS045。Y-C=C(Y)S=S(Y)Y=C+S四、家庭消费函数和社会消费函数总消费函数[AggregateConsumptionFunction]——社会总消费支出与总收入之间的关系。社会总消费函数并不是家庭消费函数的简单相加。五、消费函数理论的发展(一)消费之谜1.库兹涅茨的经验研究2.消费之谜3.消费之谜的主要表现4.消费函数研究的深化CY长期消费函数短期消费函数消费之谜(二)相对收入假说(杜森贝利)1.相对收入的含义2.攀比效应3.棘轮效应CY长期消费函数短期消费函数YtY+1相对收入假说:棘轮效应(三)终生收入假说(莫迪利安尼)1.基本思想(1)均匀消费模式(2)影响消费需求的因素:终生收入财富工作年数(工作期)预期寿命年龄YLCCYLS-SWLNLt2.预期收入不变的情况YLNLWLCWLYLNLC=)())=((C:消费需求,NL:预期寿命YL:预期年均收入WL:一生工作期YL0C0YL1C1YLCTWLNLtS0S1-S3.预期收入可变的情况影响消费需求的因素:(1)预期年平均收入YL(2)财产W(3)工作期WL、预期寿命NL(4)年龄(T)(5)当年收入YYLTNLTWLWTNLCYLTWLWTNLC--+-=)-+()=-(1(四)持久收入假说(弗里德曼)1.基本思想消费支出主要不是取决于短期收入,而是取决于长期收入水平。当期收入水平的变化,对当期消费支出只有较小的影响,只有当预期长时期内收入水平变化时,当期消费支出才会受到显著的影响。即消费支出取决于持久收入。2.持久收入和暂时收入持久收入Yp:是指长期中的收入,一般定义为能够保持三年以上的收入;暂时收入Yt:是指短期中临时的不稳定的收入;持久消费Cp:是指在长期中稳定的消费支出;暂时消费Ct:是指在短期中临时的不稳定的消费支出。Cp=f(Yp)Y=Yp+YtC=Cp+CtPYpYt=PCpCt=PYtCt=0持久收入假说的消费函数:C=cYP其中,C为消费支出,YP为持久收入水平,c为边际消费倾向。六、投资和政府支出I=I计+⊿IU第三节均衡国民收入的决定一、两部门均衡国民收入的决定(一)最简单经济体系的基本假定①两部门(居民户和企业)经济,不考虑政府和对外贸易的作用;②企业投资是自发的,不考虑利率对国民收入决定的影响;③企业利润全部分配,没有折旧;④资源尚未得到充分利用,不考虑总供给对国民收入决定的影响。GDP=Y=C+SAD=C+I假定投资为自发投资,即不随国民收入的变化而变化。∵C=+Y∴AE=C+I=(+I)+Y(二)消费对国民收入的影响总支出自发总支出引致总支出∵Y=C+I(收入恒等式)C=+Y(消费函数)∴Y=(+I)+YY-Y=+I+I1-Y=AE[C+I]AE[C+I]Y=AEEYY00CI45。自发总支出变动对国民收入的影响AEAE0Y=AEE0YY00AE2AE1Y2Y1E2E145。AEAE0Y=AEE0YY00AE2AE1Y2Y1E2E145。边际消费倾向变动对国民收入的影响“节约悖论”[ParadoxofThrift]S0S=-+(1-)Y-IEY0Y(三)储蓄对国民收入的影响储蓄曲线与投资曲线S0S0-IE0Y0Y边际储蓄倾向变动对国民收入的影响S1E1Y1Y2E2S2二、三部门经济中国民收入的决定(一)三部门经济的均衡条件假定:①没有折旧;②没有间接税;③公司利润全部分配;④没有进出口;⑤投资是自发的。Yd=Y-TYd——可支配收入总支出:AE=C+I+G总收入:Y=Yd+T=C+S+T均衡产出或收入的条件:[总支出]AE=Y[总收入]C+I+G=C+S+TI+G=S+TIS=TG计划投资与计划储蓄差额财政收支差额税收函数:T=T0+tYT-总税收,T0-自发税收(定量税),tY-引致税收(比例所得税),t-边际税率(比例税率),净税收——总税收减去政府转移支付。净税收=T-TRTR-转移支付。(二)税收对国民收入决定的影响Yd=Y-T=Y-T0-tY=Y(1-t)-T0C=+Yd=+[Y(1-t)-T0]=-T0+(1-t)Y•假定TR=0截距斜率税收与消费函数CC=+YY0C´=-T0+(1-t)Y-T0储蓄加税收S=-+(1-)Yd储蓄加定量税:S+T0=-+(1-)(Y-T0)+T0=-+T0+(1-)Y储蓄加比例所得税:S+tY=-+(1-)(Y-tY)+tY=-+[(1-)(1-t)+t]Y截距斜率截距斜率0I+GEY0Y三部门经济国民收入的决定(定量税)S+T0S+T-+T00(S+T)0I+GE0Y0Y定量税变动对国民收入的影响S+TE1Y1E2Y2(S+T)1(S+T)20I+GY三部门经济国民收入的决定(比例税)S+T-EY0S+tY0(S+tY)0I+GE0Y0YS+TE1Y1E2Y2(S+tY)1(S+tY)2税率变动对国民收入的影响-(三)政府支出对国民收入的影响AEE1YY1045。(C+I+G)0(C+I+G)2(C+I+G)1E0Y0E2Y2假定C和I不变。-T0+I+G四、四部门经济中国民收入的决定(一)四部门经济的均衡条件Yd=Y-TYd——可支配收入总支出:AE=C+I+G+X-M总收入:Y=Yd+T=C+S+T均衡产出或收入的条件:[总支出]AE=Y[总收入]C+I+G+X-M=C+S+TI+G+X-M=S+TIS=TG+M-X计划投资与计划储蓄差额财政收支差额进出口差额(二)净出口对国民收入决定的影响净出口=出口-进口=X-MY=AE=C+I+G+X-M假定消费、投资和政府购买均不变,则:净出口(X–M)增加,国民收入增加;净出口(X–M)减少,国民收入减少。(三)边际进口倾向对国民收入决定的影响边际进口倾向——当收入增加后,增加的进口在增加的收入中所占比重。m——边际进口倾向⊿M⊿Ym=AE=C+I+G+X-M=C+I0+G0+X0-MC=+YdYd=Y-T+TR0T=T0+tYM=M0+mY[m=边际进口倾向]AE=+[Y-(T0+tY)+TR0]+I0+G0+X0-(M0+mY)AE=+I0+G0-T0+TR0+X0-M0+[(1-t)-m]Y•假定出口、投资、政府购买和转移支付均不受收入的影响。截距自发总支出[AE0]斜率边际支出倾向AEY045。E0Y0E1Y1E2Y2+I0+G0-T0+TR0+X0-M0AE0AE1AE2假定和t不变,m越大,斜率越小;m越小,斜率越大。(四)四部门经济国民收入的决定Y=C+I+G+X-M=C+I0+G0+X0-MC=+YdYd=Y-T+TR0T=T0+tYM=M0+mY[m=边际进口倾向]Y=+[Y-(T0+tY)+TR0]+I0+G0+X0-(M0+mY)Y=+I0+G0-T0+TR0+X0-M01-(1-t)+m假定出口、投资、政府购买和转移支付均不受收入的影响。第四节乘数理论乘数[Multiplier]——自发总支出的增加所引起的国民收入增加的倍数。⊿Y=⊿AE=⊿(+I)+⊿Y⊿(+I)=⊿Y-⊿Y⊿Y=⊿(+I)⊿Y1⊿(+I)==K[乘数]K==111-MPC11MPS111-111-例:乘数Yt=+It+Yt-1tItYt-1YtYt-Yt-1010006000.8800080000110007000.880008100100210007000.88100818080310007000.88180824464410007000.88244829551510007000.88295833641610007000.88336836933710007000.88369839526810007000.88395841621910007000.884168433171010007000.884338446131110007000.884468457111210007000.88457846691310007000.88466847371410007000.88473847851510007000.88478848241610007000.88482848641710007000.88486848931810007000.88489849121910007000.88491849322010007000.8849384941494乘数理论的代数说明:几何级数[等比级数]pqn-1=p+pq+pq2+……+pqn-1[p0]如果|q|1,limSn==p[收敛]设p=⊿(+I),q=,n=t则:limSn=⊿(+I)=⊿Yn=1np1-q11-q⊿C⊿