选择、机会与收入的个人分配

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

选择、机会与收入的个人分配传统的“分配理论”所涉及的,几乎完全是生产要素的定价问题,即收入在各种按其生产函数所划分的经营资源之间的分配问题。它对收入在社会各成员之间的分配问题论及甚少,而且也不存在讨论这一问题的、相应的理论。不存在一种令人满意的、收入的个人分配理论,同时也不存在一种将收入的职能分配与个人分配结合起来的理论桥梁,这是现代经济理论中的一个重要的缺口。收入的职能分配一直被看作是主要地反映了个人通过市场所作的选择:各种要素的价值来自于它们在生产过程中所经营的最终产品的价值;而这些最终产品的价值依次地又为消费者在各种从技术上说是可以实现的选择之间的决策所决定。另一方面,当收入的个人分配这一问题最终地被加以分析的时候,它一直被视为基本上独立于个人通过市场所作的选择,除非是作为影响单位生产要素之价格的因素。而个人或家庭之间在所得收入方面的差别,通常被看作是或反映了基本上非个人所能控制的有关情况,如不可避免的机遇,及人们在天赋与财富继承方面的差异,或反映了集体行动,如征税与补贴。人们在上述两种联系如此紧密的场景中对个人选择所赋予的作用之间的明显差别,似乎很难成立。个人通过市场所作的选择,可以极大地限定下述两种因素对收入的个人分配的影响:一种因素是非个人所能控制的有关情况,一种是意在影响收入分配的共同行动。此外,这些共同行动本身,即使不是个人通过市场所作的选择的一种反映,也是个人偏好的一种大致的证明.个人选择可以通过两种截然不同的方式而对收入分配产生影响。另一种方式是:货币收入方面的差异可以补偿随取得这些收入而来的非金钱方面的有利或不利因素。尽管这一方式的重要性一般说来尚未得到足够的重视,但这一方式却经常引起人们的注意,而在本文章中,我们不准备进一步地研究这一问题。举例说明,一种不令人愉快的职业必需得到比另一种令人愉快的职业更高的报酬——如果前者想吸引那些同样可以得到后一种职业的人的话;没有吸引力的地区的收入必须高于有吸引力的地区的收入——如果前者不想让它的居民搬走的话;等等。在这些情况下,货币收入方面的差异被用来产生实际收入方面的平等。第二种方式是:个人选择可以影响收入分配。这一方式较少地为人们所注意。某个人可得到的各种情况,在它们所确保的收入的概率分配方面(作为许多方面之一)是不同的。所以,他在这些情况中所作的选择,部分地取决于他对风险的偏好。假定两组社会成员面对着同一系列情况,其中一种社会是由极为厌恶风险的人所组成的;另一种社会是由“喜欢”风险的人所组成的。偏好上的这一差异将决定着人们对同一系列情况的不同选择。资源在意在产生对个人具有吸引力的这类风险的活动中的不同分配,将再清楚不过地反映这一点(尽管这种反映绝不是完全的)。例如,在第一种社会中,保险将是一项重要的行业,而在第二种社会中,投机将是一项重要的行业。同时在第一种社会当中,所得税与遗产税将是高度累进的,而在第二种社会当中,二者的累进程度将较小,甚至是累退的。结果将产生两种社会中不同的收入分配;与第二种社会相比,第一种社会中收入的不平等程度将较小。从中可以得出这样的结论:一社会中收入方面的不平等可以被看作是(至少部分地)——且也许大部分地——与该社会成员的兴趣与偏好相一致的精心选择的一种反映(这基本上可以与社会所生产的产品种类上的不一致同样看待),而不应仅仅地被看作是一种“不可抗拒的力量”。接下来的阐述在一抽象水平上证明了并探讨了这样一种相互关系:个人在具有风险的各种情况之中所作的选择与个人在不同的收入水平上的分布情况之间的相互关系。为了进行这一探索性的讨论,我将接受决策的预期效用假说,即我将假定:个人在具有风险的各种情况中所进行选择,就犹如他们知道与每一种情况相关的收入的概率分配一样,就犹如他们正在力求使某一被称作“效用”的数量的预期值(这是收入的一个函数)最大化一样。我将假定:效用是收入的一个增函数。1.一个与世隔绝的人作为一个最简单的事例,让我们考虑一下与人类完全隔离开来的鲁宾逊·克鲁苏的情况。为了避免收入测算上的困难,让我们假定他只生产一种产品,或者说对于所有的产品来说,只存在着一套可以被用来对产量(以一种产品的单位计量的)加以表示的相对“价格”或“价值”。在任一时点上,鲁宾逊·克鲁苏都有着多种可以进行的活动——即使用他的时间及岛上的各种资源的不同方法。他可以对可耕种的土地进行集约开垦或粗放开垦,他可以制作某种资本产品来帮助他的开垦,他可以去打猎或去钓鱼或者二者都做,等等,等等,无穷无尽。假定他选定了某项活动并开始进行。结果将是一定时期内的收入之流,即为I(t),这里I代表着单位时间上的收入,t代表时间。目前,他所进行的活动是t0,当然,I(t)在(t>t0时)并不是完全可知的——他所选定的活动的实际结果不仅取决于鲁宾逊·克鲁苏的所作所为,而且取决于下述随机事件:如天气,当他去钓鱼时周围鱼的偶然数最,他所种植的种子的质量,他的健康状况,等等。我们可以通过下述假定而将这一不确定性考虑进来:假定相对于每一种活动,都存在着一系列可能的将来收入之流,每一种可能的将来收入之流都具有己知的发生概率pt0[I(t)]。这样一种收入之流的概率分布我们将称之为一种“预期”。在任一时点t0上,鲁宾逊·克鲁苏可选择的各种预期,毫无疑问地取决于他过去的活动。而这依次地又可以被看作是前一阶段的类似选择的结果。如果我们愿意的话,我们可以将他想象为:在开始我们的分析的任一时点上(比如说当他踏上这个小岛的时候),他都在为他的余生制定一个简单的决策。对于所有的目的来说,这种概括程度可能不是十分理想的;对于某种目的来说,用冯·纽曼及摩根斯坦的术语来说,最好对个人的“行动”加以考虑,而不是完全地考虑个人的“策略”。然而,在我们目前的分析阶段上,可以对所有不必要的复杂情况予以排除。采用这一观点使我们得以去掉下标t0,因为仅存在一套有关的预期,且每一种预期所包括的将来收入之流都是对同一时期而言的,也就是说,是从最初的开始点到无限的将来。作为一种更进一步的简化(尽管是更为不可靠的),我们可以通过下述方法而用一个数来替代每一个I(t):或者通过假定I(t)是一单变数家族的所有成员,比如说具有同一斜率的所有直线;或者通过以某一给定的利率而把将来收入贴现为初始点的价值,并将这些贴现收入相加以求得每一收入流的现值。而这两种假设之中的任何一个都可以确保每一I(t)为一数值所替代。我们假定这一数值为W,代表财富,且可以在不知道个人效用函数创的情况卜进行计算。这些简化假设没意味着:在所讨论的某一行动的结果将是一小于W的财富值的概率一定的条件下,任一预期都可以完全地由一连续型概率分布P(W)所描述。令A’代表所有活动的集合,a代表其中的在一特定的活动,Pa(W)代表与α相对应的预期。效用是财富的一个增函数(在我们目前的公式中是用财富来替代收入)这一假设本身便足以排除某些预期。如果Pa(W≤Pa’(W)(对于所有的W来说)(1)且Pa(W)Pa’(W)(对于某些W来说)那么,不论财富的效用函数的形状如何,a都明显地优于a’。令(削减后的)集合A由这样一些活动所构成从而使得与这些活动相对应的预期中没有一个满足方程(1)。从而,在集合A之中所进行的选择不仅仅取决于效用函数的一阶导数。令U(W)代表鲁宾逊·克鲁苏的效用函数。那么,按照预期效用假说,他将选择预期a从而使得U为最大值。这里,)()((2)除了对预期效用假说所作的这一重新表述以外,在目前这一概括水平上,关于这一特例所能阐述的东西甚少。假定存在着许多完全相同的鲁宾逊·克鲁苏:他们面对着完全相同的活动系列及相应的预期,并彼此完全隔离。原则上,所有的人都将作出同样的选择——预期a*。此外,如果任一鲁宾逊·克鲁苏的活动结果(他们实现了的W)都完全地独立于任一其他的鲁宾逊·克鲁苏的活动结果(另一个人的实现了的W),那么,Pa*(W)将是实现了的、财富在他们之中的连续型分布情况.他们之中的收入“不平等”将部分地是精心选择的产品,且”不平等”的程度将部分地取决于对于他们来说是共同的这一效用函数的形状。如果这一效用函数是一直线时,那么每一个鲁宾逊·克鲁苏都将选择具有最高预期收入的预期;如果这一效用函数是处处下凹的话(即收入的边际效用递减),那么他将愿意牺牲某些预期收入来取得减小了的收入方差;如果这一效用函数是处处上凹的话(即收入的边际效用递增),那么他将愿意牺牲某些预期收入来取得增大了的收入方差,等等。给定一足够大且种类足够多的预期系列,这些鲁宾逊·克鲁苏之间的收入之“不平等”,在第二种情况中程度最小,而在第三种情况中程度最大。然而,任一鲁宾逊·克鲁苏所实现的W,不一定要完全独立于其他鲁宾逊·克鲁苏所实现的W。例如,尽管每一鲁宾逊·克鲁苏都不知道其他鲁宾逊·克鲁苏的存在,但是,他们所在的小岛可能都处于同一地理区域,处于同样的气候条件之中。在这种情况下,如果我们假定每一个人只作一种选择的话,那么,Pa*(W)将不是财富在他们之中已实现的连续型分布情况。在彼此完全依存的极端情况下,所有的鲁宾逊·克鲁苏将实现同样的财富,所以,即使效用函数是处处上凹的,也可能会存在完全的平等。而在一些中间情况中,彼此依存的种类与程度影响着已实现的收入分布的形状,但并不影响效用函数的形状对不平等程度的影响方面的一般性结论。2.社会中的个人再分配是无耗费的假定许多完全同一的鲁宾逊·克鲁苏建立起了彼此联系.现在,决定为每一个人所采取的活动的那些考虑已经出现了根本性的改变,因为,为实现所得产品的再分配而通过鲁宾逊·克鲁苏之间的联合预先协议来产生新的预期现在已经是不可能的了。在我们的社会中个人间普遍存在的许多安排都涉及到了这种再分配,所以,不一定要通过“政府”来假定共同行动的存在。公开卖出保险或进行投机的私人企业就是一些极端的且明显的事例。但是,下面这种现象则要很普遍:在我们的社会中,几乎每一个企业都部分地是改变财富的概率分布的一种安排。例如,假定一个鲁宾逊·克鲁苏将其自身作为一个包管他人“工资”、并取得剩余产品的企业家,但是,假定每一个人都打算去做他原先所要做的事,从而这一“企业”不具有任何通常的监督管理职能。这样一来,改变了所涉及的这些人可得的预期系列。的确,将“产生出”新的预期这一职能视为现代社会中的一个“至关重要的”企业职能是可以找到有力证据的,这里,“产生出”新的预期不是通过技术上的变化或改进来进行的,而是通过不确定性影响的再分配来实现的。当然,一般说来,相互联系通过知识的传布而改变了与任一活动相对应的财富的概率分布,并通过产品的交换而使新的活动成为可能,从而影响到了劳动力的划分及职能的专业化的范围。然而,我们可以不考虑这些复杂情况,因为总体说来它们所影响的只是收入的可得水平,而不是收入的分配。所以,我们可以假定:仅通过相互联系的建立及产品的交换,尚不足以改变每一鲁宾逊·克鲁苏可得的收入的概率分布系列。然而我们却无法将另一复杂情况如此轻松地置之一旁:即再分配安排中所存在的管理与控制费用。这些代价中最为重要的是此类安排对积极性的影响。与让某人自己承担火灾损失的全部费用的情况相比,如果他已进行房屋火灾损失保险,那么他拿出资源来防止火灾的积极性就较小。用我们的专用术语来说,就是,唯有当所研究的这一鲁宾逊·克鲁苏本人直接得到结果W的时候,活动α及与其相联系的概率分布Pa(W)才是可以取得的.如果某一集团订立了这样的协议:每一个人将采用活动a,集合起所得到或产品,并进行分配(比如说平均地)。那么,实际实现的财富将截然不同于每一个人独立地采用活动a时所实现的财富情况——也就是说,事实上,这一集团中的个人将不会采用活动a。当然,这是为什么防范损失的完全保险唯有对那些大致地与个人行动相独立的危险来说才是可行的一个基本原因,也是为什么所有意在使个人所得与他们的生产贡献相脱离的作法都遇到了极大的困难,甚至于完全失败的一个基本原因。我们将把这一复杂情况推迟到下一部分中去讨论。在这一部分里,我们将假定再分配安排不涉及任何费用,即不论个人是独立地行动还是进入再分配安排,活动集合A及

1 / 33
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功