数学教案-二元一次方程与一次函数精编3篇

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

好文供参考!1/10数学教案-二元一次方程与一次函数精编3篇【引读】这篇优秀的文档“数学教案-二元一次方程与一次函数精编3篇”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!元一次方程教案1教学目标知识目标:1、通过观察,归纳二元一次方程的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个数是它的解。过程与方法:通过与一元一次方程的比较,加强学生的类比的思想方法。情感态度与价值观:通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。教学重点、难点重点:二元一次方程的意义及二元一次方程的解的概念。难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数好文供参考!2/10的方程。教学过程一、复习引入:(1)方程的概念)(;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?(2)合作学习:①小红到邮局寄挂号信,需要邮资3元8角。小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?这个问题中有几个未知数,能列一元一次方程求解吗?如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,你能列出方程吗?二、新课教学这就是我们今天要学习的4、1二元一次方程(板书课题)(1)观察上述两个方程,归纳特点(2)讨论选择正确概念①含有两个未知数的方程叫二元一次方程。②含有两个未知数,且含有未知数的项的次数都是1次的`方程叫二元一次方程。好文供参考!3/10(3)做一做P86——1,2(4)例:已知方程3x+2y=10①用关于x的代数式表示y(分析:只要把方程3x+2y=10看作未知数是y的一元一次方程,解关于y的方程)②求当x=-2,0,3时,对应的y的值(提问:把x=-2,y=8代入方程3x+2y=10,能否使其左右两边相等?回忆方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一个解,记作。同理试写出该方程的两个解(注意写法格式)思考:方程3x+2y=10的解有多少个?师归纳:二元一次方程解具不定性和相关性(5)练习:P88——课内练习1,2(6)补充练习:P89---作业题4(说明:方程的解须是正整数)已知,是方程2x+3y=5的一个解,那么由此可知道些什么?(说明:1.本例是根据教科书P89---B组第5题改编。原题要求a的值,但学生常常有困难,因此这里把原题改为开放式命题,看起来似乎比原题要求高了,其实有利于各类学生参与并寻求结论。好文供参考!4/10三、课堂小结:二元一次方程的意义及二元一次方程的解的概念(注意书写格式)二元一次方程解的不定性和相关性会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式四、作业:课堂作业本七年级数学二元一次方程组教案2教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题难点:寻找等量关系教学过程:看一看:课本99页探究2问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?3、本题中有哪些等量关系?好文供参考!5/10提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?思考:这块地还可以怎样分?练一练一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:农作物品种每公顷需劳动力每公顷需投入奖金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为元/(吨?千米),铁路运价为元/(吨?千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?好文供参考!6/10初中《二元一次方程与一次函数》教学设计3一、教材分析1、教材的地位和作用函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。2、教学重难点重点:一次函数与二元一次方程(组)关系的探索。难点:综合运用方程(组)、不等式和函数的知识解决实际问题。3、教学目标知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。解决问题:能综合应用一次函数、一元一次方程、一元一好文供参考!7/10次不等式、二元一次方程(组)解决相关实际问题。情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。二、教法说明对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的。主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。三、教学过程(一)感知身边数学学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动好文供参考!8/10中来。(二)享受探究乐趣1、探究一次函数与二元一次方程的关系[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。2、探究一次函数与二元一次方程组的关系[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。(三)乘坐智慧快车例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分元的价格按上网时间计费;方式B除收月基费20元外再以每分0.05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,好文供参考!9/10体会数形结合这一思想方法的应用。(四)体验成功喜悦1、抢答题2、旅游问题[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。(五)分享你我收获在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。(六)开拓崭新天地1、数学日记2、布置作业[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。好文供参考!10/10四、教学设计反思1、贯穿一个原则以学生为主体的原则2、突出一个思想数形结合的思想3、体现一个价值数学建模的价值4、渗透一个意识应用数学的意识

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功