最新投资估值第二讲估算贴现率

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第二讲贴现率的估计2一、资本资产定价模型(CAPM)资本资产定价模型(CapitalAssetPricingModel简称CAPM)是由美国学者夏普(WilliamSharpe)、林特尔(JohnLintner)、特里诺(JackTreynor)和莫辛(JanMossin)等人在资产组合理论的基础上发展起来的,是现代金融市场价格理论的支柱,广泛应用于投资决策和公司理财领域。主要研究证券市场中资产的预期收益率与风险资产之间的关系,以及均衡价格是如何形成的.资本资产定价模型主要应用于资产估值、资金成本预算以及资源配置等方面。3其中:=无风险收益率=市场组合的预期收益率fR)(mRE])([)(fmfRRERREfmRRE)(=风险溢价资本资产定价模型(CAPM)投资者所要求的收益率即为贴现率。4设股票市场的预期回报率为E(rm),无风险利率为rf,那么,市场风险溢价就是E(rm)−rf,这是投资者由于承担了与股票市场相关的不可分散风险而预期得到的回报。考虑某资产(比如某公司股票),设其预期回报率为Ri,由于市场的无风险利率为rf,故该资产的风险溢价为E(ri)-rf。资本资产定价模型描述了该资产的风险溢价与市场的风险溢价之间的关系E(ri)-rf=βim(E(rm)−rf)式中,β系数是常数,称为资产β。β系数表示了资产的回报率对市场变动的敏感程度,可以衡量该资产的不可分散风险。如果给定β,我们就能确定某资产现值的正确贴现率了,这一贴现率是该资产或另一相同风险资产的预期收益率贴现率=Rf+β(Rm-Rf)。5任意证券或组合的期望收益率由两部分构成:一部分是无风险利率,它是由时间创造的,是对放弃即期消费的补偿;另一部分则是对承担风险的补偿,通常称为“风险溢价”。6模型中变量的估计3、风险溢价1、无风险利率2、市场组合的收益4、贝塔系数的估计7(一)无违约实体通常把政府看作是无违约实体针对长期项目进行投资分析或估价时,无风险利率应该是长期政府债券的利率如果是短期,则采用短期政府证券的利率作为无风险利率二、无风险利率的估计8所谓无风险利率,是指投资者可以任意借入或者贷出资金的市场利率。现阶段,符合理论要求的无风险利率有两个:回购利率、同业市场拆借利率。在美国等债券市场发达的国家,无风险利率的选取有两种观点:观点1:用短期国债利率作为无风险利率,观点2:用即期的长期国债利率作为无风险利率第一种观点认为CAPM是单时期的风险收益模型,即期的短期国债利率是未来短期利率的合理预期第二种观点认为长期国债与被估价资产具有相同的到期期限。(二)无风险利率9注意问题:•国际评价时,要求现金流与所采用的无风险利率用同一种货币计价10三、市场组合的收益率•市场平均收益率、市场组合的平均收益率、市场组合的平均报酬率、证券市场平均收益率、市场组合的必要报酬率、股票价格指数平均收益率、股票价格指数的收益率等。四、风险溢价确定11CAPM中使用的风险溢价是在历史数据的基础上计算出的,风险溢价的定义是:在观测时期内股票的平均收益率与无风险证券平均收益率的差额,即(E[Rm]-Rf)。目前国内的业界中,一般将(E[Rm]-Rf)视为一个整体、一个大体固定的数值,取值在8—9%左右。理论上,由于无风险利率已知,只需要估算出预期市场收益率即可风险溢价。12(一)股票的风险溢价额1、所使用的时期2、无风险证券的选择3、算术平均或几何平均4、不同国家(历史水平)13美国历史上的风险溢价时间股票对国库券%股票对国债券%算术几何算术几何1928-20008.417.176.535.511962-20006.415.255.304.521990-200011.427.6412.677.09用几何平均值计算得到的收益率一般比算术平均值要低,因为在估价时我们是对一段较长时间内的现金流进行贴现,所以几何平均值对风险溢价的估计效果更好。1415美国以外的市场在历史上的风险溢价额国家股票债券开始结束年度报酬%年度报酬%溢价额%澳大利亚100898.368.476.991.48加拿大1001020.708.988.300.68法国1001894.2611.519.172.34德国1001800.7411.3012.10-0.80中国香港10014993.0620.3912.667.73意大利100423.645.497.84-2.35日本1005169.4315.7312.693.04墨西哥1002073.6511.8810.711.17荷兰1004870.3215.4810.834.65新加坡1004875.9115.486.459.03西班牙100844.808.227.910.31瑞士1003046.0913.4910.113.38英国1002361.5312.427.814.6116世界各国的股票市场风险溢价收益率(%)。1970-1990年国家股票政府债券风险溢价收益率澳大利亚9.607.352.25加拿大10.507.413.09法国11.907.684.22德国7.406.810.59意大利9.409.060.34日本13.706.966.74荷兰11.206.874.33瑞士5.304.101.20英国14.708.156.25美国10.006.183.8217列出了世界各国的风险溢价收益率,从表中可见欧洲市场(不包括英国)股票相对国库券的风险溢价收益率没有美国和日本高,决定风险溢价收益率的因素有以下三点:(a)宏观经济的波动程度:如果一个国家的宏观经济容易发生波动,那么股票市场的风险溢价收益率就较高,新兴市场由于发展速度较快,经济系统风险较高,所以风险溢价水平高于发达国家的市场。(b)政治风险:政治的不稳定会导致经济的不稳定,进而导致风险溢价收益率较高。(c)市场结构:有些股票市场的风险溢价收益率较低是因为这些市场的上市公司规模较大,经营多样化,且相当稳定(比如德国与瑞士),一般来说,如果上市公司普遍规模较小而且风险性较大,则该股票市场的风险溢价收益率会较大18五、贝塔值β的估计运用股票收益率与市场组合收益率的回归模型mibRaR其中iRmR2),cov(mmiRRb回归曲线的斜率19回归方程的斜率与资产的贝塔值一致,衡量该资产风险。注意问题:分析人员要确定如下三个决策:第一,估计期间长短,更长时间需要更多资料,但是公司特征也因为时间而改变;第二,估计的问题与收益的时间单位相关,使用每日或日内都会增加回归方程中观测值的数目;第三,估计问题与选择在回归方程中所使用的市场指数有关。通常做法是选用最适合观察到的某只股票的指数。20mffmfjRRRRRR)1()(mibRaR与下式比较aa)1(fR)1(fR)1(fRa=股权资本在回归期内比预期的运作得更好股权资本在回归期内比预期的运作得一样股权资本在回归期内比预期的运作得要糟二者之差称为Jenson阿尔法系数21公司的β值由三个因素决定:公司所处的行来、公司的经营杠杆比率和公司的财务杠杆比率。1、行业类型:β值是衡量公司相对于市场风险程度的指标。因此,公司对市场的变化越敏感,其β值越高。在其它情况相同时,周期性公司比非周期性公司的β值高,如果一家公司在多个领域内从事经营活动,那么它的β值是公司不同行业产品线β值的加权平均值,权重是各行业产品线的市场价值。(二)贝塔值β的决定因素222、经营杠杆比率:经营杠杆比率是公司成本结构的函数,它通常定义为固定成本占总成本的比例。公司的经营杠杆比率越高,即固定成本占总成本的比例越大,与生产同种产品但经营杠杆比率较低的公司相比,利息税前净收益(EBIT)的波动性越大。其他条件不变,企业经营收入的波动性越大,利息税前净收益(EBIT)的波动性越大。其他条件不变,企业经营收入的波动性越大,经营杠杆比率就越高,公司的β值就越高。23举例:经营杠杆比率与EBIT的波动性设A,B两家公司生产同种产品,A公司的固定成本为5000万美元,变动成本是收入的40%。B公司的固定成本为2500万美元,变动成本为收入的60%。考虑下面三种情况:预期经济情况:两公司的经营收入为1.25亿美元;经济繁荣情况:两公司的经营收入为2亿美元;经济衰退情况:两公司的经营收入为0.8亿美元。EBIT(百万美元)公司固定变动固定成本预期经经济高经济衰成本成本/总成本济情况涨情况退情况A公司50500.502570-2B公司25750.2525557A公司的经营杠杆率较高,EBIT的变化量较大,因此β值比B公司的经营杠杆率大,EBIT的变化量较小,β值较小。243、财务杠杆比率:财务杠杆反映了企业或公司对债务融资的依赖程度,有负债的企业或公司,即杠杆公司,无论企业或公司销售情况如何变动,都需要支付利息。其它情况相同时,财务杠杆比率较高的公司,β值也较大,在直观上看,债务利息支出的增加将导致净收益波动性的增大,即在经济繁荣时期收益增长幅度较大,而在经济箫条时期收益下降幅度也较大。25(三)贝塔计算公式其中,是资产与市场的协方差是市场方差。2cov(,)imimRRcov(,)imRR2m26注意可能存在的问题:1.贝塔值可能随时间变化,即稳定性2.样本容量可能太小3.贝塔受财务杠杆和经营风险变化的影响27注意:掌握β值的含义◆β=1,表示该单项资产的风险收益率与市场组合平均风险收益率呈同比例变化,其风险情况与市场投资组合的风险情况一致;◆β1,说明该单项资产的风险收益率高于市场组合平均风险收益率,则该单项资产的风险大于整个市场投资组合的风险;◆β1,说明该单项资产的风险收益率小于市场组合平均风险收益率,则该单项资产的风险程度小于整个市场投资组合的风险。小结:1)β值是衡量系统性风险,2)β系数计算方式。补充内容28一、期望收益期望收益也称为预期收益,指如果没有意外事件发生时根据已知信息所预测能得到的收益。通常,未来的资产收益是不确定的。不确定的收益可以用多种可能的取值及其对应的概率来表示,这两者的加权平均,即数学期望值,就是资产的预期收益。在任何情况下,资产的平均或预期收益(expectedreturn)就是其收益的概率加权平均值。Pr(s)表示s情况下的概率,r(s)为该情形下的收益,那么预期收益计算公式如下:E(r)=Pr()()ssrs29名称糖生产的正常年份糖生产的异常年份股市牛市股市熊市生产危机概率0.50.30.2收益率2510-25例如,一家生产糖的公司预期收益情况,如上表,在三种可能的情况下,我们得出该公司股票的预期收益率为:E(r)=(0.5×25)+(0.3×10)+0.2(-25)=10.5%30二、方差与标准差方差是各个数据与平均数之差的平方和的平均数。在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。标准差是方差的平方根。方差和标准差是衡量股票或资产收益波动性。31资产收益的方差(variance)是预期收益的平方差的预期值。它可以表示为:因此,在我们的例子中,有标准差为22220.5(2510.5)0.3(1010.5)0.2(2510.5)357.25++=357.2518.9%22()Pr()()()rsrsEr三、协方差与相关系数32我们引用协方差与相关性的概念来量化资产的套期保值或分散化。协方差(covariance)测度的是两个风险资产收益的相互影响的方向与程度。正的协方差意味着资产收益同向变动;负的协方差表明它们朝相反的方向变动。计算公式为121111(,)Pr()()()()()CovrrsrsErrsEr33糖生产的正常年份异常年份股市的牛市股市的熊市糖的生产危机概率0.50.30.2收益率(%)r12510-25r21-535根据Cov(r1,r2)=0.5(2

1 / 49
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功