关于二次函数的知识点总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

关于二次函数的知识点总结导语:二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。下面是由网友分享的关于二次函数的知识点总结。欢迎学习下载!二次函数的知识点总结1、二次函数及其图像二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2bxc(a不为0)。其图像是一条主轴平行于y轴的抛物线。一般的,自变量x和因变量y之间存在如下关系:一般式y=ax∧2;bxc(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);顶点式y=a(xm)∧2k(a≠0,a、m、k为常数)或y=a(x-h)∧2k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引导出交点式的系数a=y1/(x1*x2)(y1为截距)求根公式二次函数表达式的右边通常为二次三项式。x是自变量,y是x的二次函数x1,x2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。注意:草图要有1本身图像,旁边注明函数。2、画出对称轴,并注明X=什么3、与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质轴对称1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)顶点2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2;)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2;-4ac=0时,P在x轴上。开口3.二次项系数a决定抛物线的开口方向和大小。当a0时,抛物线向上开口;当a|a|越大,则抛物线的开口越小。决定对称轴位置的因素4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a当a与b异号时(即ab0,所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。决定抛物线与y轴交点的因素5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)抛物线与x轴交点个数6.抛物线与x轴交点个数Δ=b^2-4ac0时,抛物线与x轴有2个交点。Δ=b^2-4ac=0时,抛物线与x轴有1个交点。Δ=b^2-4ac当a0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{x|x{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2c(a≠0)特殊值的形式7.特殊值的形式①当x=1时y=abc②当x=-1时y=a-bc③当x=2时y=4a2bc④当x=-2时y=4a-2bc2、二次函数的性质8.定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。周期性:无解析式:①y=ax^2bxc[一般式]⑴a≠0⑵a0,则抛物线开口朝上;a⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ0,图象与x轴交于两点:([-b-√Δ]/2a,0)和([-b√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ②y=a(x-h)^2k[顶点式]此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)对称轴X=(X1X2)/2当a0且X≧(X1X2)/2时,Y随X的增大而增大,当a0且X≦(X1X2)/2时Y随X的增大而减小,此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1X2值。用函数观点看一元二次方程1.如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。2.二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。实际问题与二次函数在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功