1/15倍数和因数教学反思冀教版(最新5篇)无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写较为完美的范文呢?下面是网友为大家分享的“倍数和因数教学反思冀教版(最新5篇)”,供大家参考借鉴,希望可以帮助到有需要的朋友。倍数和因数教学反思冀教版【第一篇】《数学课程标准》指出:有效的数学学习活动,不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流,是学生学习数学的重要方式。本片断一开始,以“用12个同样大小的正方形,摆成一个长方形”为例,让学生动手操作、合作交流,怎样摆,有哪些不同的摆法?这里牛老师充分挖掘了教材,根据教材中的3种长方形的摆法,教师预想到学生可能出现的6种操作方法,事先用课件预设好。同时,教师在学生小组交流、操作后,又请各小组代表到黑板上演示自己的一种摆法,得到大家的认可后,再用课件逐一呈现。这样的安排,首先体现了以学生为本,用学生已有的经验和动手操作,很好的调动了学生学习的积极性和主动性,同时知识的得到是从实际问题的解决,抽象为具体讨论的数学问题。其次,这样的安排体现了两方面好处:一方面让学生乐于接受,是学生在展示自己的想法,老师仅仅是2/15组织者,另一方面培养了学生善于观察和倾听他人的想法的良好学习态度。这里的设计,有效的解决了知识的传授与理解。本片断的两个练习。第一个练习是“请你做裁判”。这一组的3题突出了说倍数和因数时,强调谁是谁的因数,谁是谁的倍数,同时也让学生理解了两个数的倍数和因数的关系。第二个练习是“请你说一说”。教师选择了2,3,5,6,9,20这6个数,让学生选择性的分析以上信息,运用所学知识说说哪两个数存在倍数和因数的关系。这样的设计,培养了学生观察、分析问题、口头表达的能力,也进一步巩固了倍数和因数的概念理解,接着教师又增加了“1”,让学生再次用“1”与其它数比较,小组交流发现1与其它自然数的关系,学生很快总结出1是其它自然数的因数,其它自然数是1的倍数。这样的练习形式,很好的解决了本节课对于因数和倍数的概念理解,同时,形式上也较多的鼓励学生参与学习、发表自己的见解、小组交流等,充分调动学生、相信学生、培养学生的学习能力,我觉得处理的较好。这里需要说明一点,四年级国标版教材的倍数和因数,和苏教版五年级第十册教学的`约数和倍数单元内容相近,这里的概念也是建立在数的整除的基础上,不同的是国标版第八册教材是用乘法的方式引入新知的学习。牛琴老师在教学练习二时,有一个学生说出3是2的倍数,2是3的因数,该同学刚说完,就有很多同学指出这种说法的错误,老师追问错误原因,有一个学生说因为3除以2不能整3/15除,教师也及时给出结论:因为3除以2不能除尽。这个结论显然不准确,或者说犯了科学性的错误,3除以2能除尽,但是3除以2得不到整数的商,所以3不可能被2整除,在这样的前提下,3不是2的倍数,2也不是3的因数。我觉得教师如果不自己下结论,而是让学生结合这一问题展开讨论、交流、对比,可能会使课堂增添一个意外的惊喜。1、练习一第3题:54是9的倍数。在学生判断后,能否再展开拓展,54还是哪些数的倍数,鼓励学生发现54与其它自然数的倍数关系,也为后面教学找一个数的所有因数做铺垫。2、练习二中,老师选择了6个数字让学生选择其中的两个数判断倍数和因数关系,从实际情况看完成的较好,不过是否显多了,能否去调2个,这样课的结构会不会更紧密,课堂效果会更好呢?当然,我们的研究正如我们学校出版的教学片断的书序中所说:燃一根火柴,会闪亮一点,倘若用一根火柴点燃一堆篝火,定会带来无限的精彩。希望我们的研究能给兄弟学校一定的思索,同时也希望兄弟学校能反馈给我们宝贵的建议,让我们在课程改革中,更加坚定,更加执着。倍数和因数教学反思冀教版【第二篇】反思教学效果总结了的原因有以下几点:(一)素数和合数的判断不熟练。一些数如:49、51、91这些数看上去是素数,但其实是合数。这些数经常被学生误认4/15为是素数而导致错误,原因是这些学生就简单的看看,而不愿意用2、3、5等素数去尝试,努力寻找是不是有第3个因数存在。(二)意思相同,但语句表述不同时,有的学生就不能正确理解。如:在上面的数只有两个因数的数有哪些?其实这道题目就是问在上面的数中素数有哪些。(三)有的学生缺少分析理解,研究和判断的能力,判断和选择题的错误比较多。例如:1的倍数肯定是奇数。如果一个学生先找到1的倍数,然后根据数的特点作出正确的判断。但有的学生看到1是个奇数,然后就简单地做出它的倍数也是奇数想法。例如:一个数的倍数一定比它的因数大。如果学生找一个数,看看它的最小倍数是哪个?找找它的最大因数是哪个?这样不难找到正确的答案。但是有的倍数简单地被题目的意思误导,加上平时的练习中还有倍数一般都是大的,因数一般都是小的概念,学生容易误判。教学中,我和学生有时太满足于平时练习的结果,而缺少让学生进行数学思考和表达能力的过程训练。看来在以后的教学中,我要继续改变教学观念,要高度尊重学生,依靠学生,把以往教学中主要依靠教师转变为依靠学生。建议1、在新知教学中,注重引导学生进行探究。在本单元中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数”,找一5/15个数的因数是本课的难点。应该说,找出36的几个因数并不难,难就难在找出36的所有因数。教学中,建议教师不要把方法简单地告诉学生,而是让学生独立去探究,独立写出36的所有因数,在学生反馈的基础上教师再引导学生对有序和无序作比较,学生才能在比较、交流中感悟有序思考的必要性和科学性。交流的过程正是学生相互补充、相互接纳的过程,是对学习内容进行深加工和重组知识的过程,是学生的认知不断走向深入,思维水平不断提升的过程。这是新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生独立思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。2、寓教于乐,游戏中进行相应的巩固练习。本节课是一节概念课,内容比较枯燥,课本上的练习形式也比较单一,所以在认识倍数和因数后,应安排有趣味的游戏,比如数字转盘游戏,让学生看转盘说指针停止时,内圈的数与外圈的数的关系,进一步认识倍数和因数,又能从中发现倍数和因数的相互依存的关系。在学会找倍数和因数之后也可设计游戏,如:“猜猜一位老师的电话号码”,在一个八位数的号码中已知其中四位,根据有关倍因数关系的问题请学生找出未知的四位号码,6/15以提高学生学习的积极性,稍有难度的练习给学有余力的学生一个证明自己能力的机会,让学生在数学活动中体验到数学学习的趣味性和挑战性,学生运用所学知识解决问题,体会到了学习新知识后的成就感。3、教师要注重评价的导向作用,让学生在评价中成长。在第一课时学生交流12的因数时,教师展示了三位同学的作业:第一种是无序的,第二种是从小到大有序的,第三种是一对一对有序的。接着老师让第一种方法的学生说说自己的想法,并让其他同学评论,此时大多数学生的评价都认为不好,找得缺漏、无序,这时其实作为老师是否可以问问这种答案“有没有值得肯定的地方?”,毕竟找到的这些答案都是正确地,然后再去寻找更好的方法。如果老师能经常注意这样引导评价,学生自然而然地意识到要先看别人的优点,再看别人的缺点,也给了刚才那位学生一个心理上的安慰,使他能更积极地投入到学习当中去。倍数和因数教学反思冀教版【第三篇】我在教学因数和倍数时,我发现倍数和因数这一内容与原来人教版教材比有了很大的变化,人教版教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,我在教学时做了一些下的改动,让学生用24张小正方形摆长方形,然后自己用算式把摆法表示出来。这样学生的算式就不仅限于乘法,有个别学生写了除法算式。这样学生很容7/15易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。因为现在我班也有个别学生在学习奥赛,所以我从整除的角度也介绍了因数与倍数的概念.由于这节的概念较多,因此有不少是由老师直接告知的,但这并不意味着学生完全被动的接受。如让学生思考:你觉得4和24、6和24之间有什么关系呢?(对乘除法学生有着相当丰富的经验,因此不少学生能说出倍数关系,可能说得不很到位,但那是学生自己的东西)。当学生认识了倍数之后,我进行了设问:24是4的倍数,那反过来4和24是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到24是4的倍数,反过来4就是24的因数,接下来就是6和24的关系,同学们都争者要回答。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:①用什么方法找36的因数。②如何找不重复也不遗漏。通过在小组交流的过程中,学生与学生之间对自己刚才的方法进行反思,吸收同伴中好的方法,这比老师给予有效得多。学生就这样轻松、愉快的学习了因数、倍数的有关知识。8/15倍数和因数教学反思冀教版【第四篇】《因数和倍数》是人教版小学数学五年级下册第二单元的起始课,也是一节重要的数学概念课,所涉及的知识点较多,内容较为抽象,对于学生来说是比较难掌握的内容,在这样的前提下,如何能充分发挥学生的主体作用,让他们自主探索,自己感悟概念的内涵,并灵活地运用“先学后教”的模式,达到课堂的高效,在课堂中我做了以下的尝试。我觉得作为一名教师,重要的是领会教材的编写意图,灵活的运用教材,让每个细节都能发挥它应有的作用。如教材是利用了一个简单的实物图(2行飞机,每行6架;3行飞机,每行4架)引出了要研究的两个乘法算式“2×6=12,3×4=12”直接给出了“谁是谁的因数,谁是谁的倍数”的概念。这样做目的有二:一是渗透了从乘法算式中找因数倍数的方法,二是利用数与数之间的关系明确的看到因数倍数这种相互依存的关系。但这样做仍不够开放,我是这样做的:课始并没有出示主题图,直接提出问题:“如果有12架飞机,你可以怎样去排列?”学生除了能想到图中的两种排法还能得到第三种,这样做是用开放的问题做为诱因,使学生得到“2×6=12、3×4=12、1×12=12”三个算式,而这些算式不仅能够清晰地体现因数倍数间的关系,更是后面“如何求一个数的因数”的方法的渗透和引导。看来灵活的运用教材,深放领会意图,才能使教学更为轻松、高效!9/15模式是一种思想或是引子,面对不同的课型,我们应该大胆尝试,不断的积累经验,使模式不再是僵化的,机械的。只要是能促进学生能力形成的东西,我们不能因为要运用模式而把它们淡化,反之,应该想方设法,在不知不觉中体现出来。如本课中例1是“求18的因数有哪些”,例2是“求2的倍数有哪些”教材的设计已经能够体现学生自主探索知识的轨迹,那我们何不通过一句简短的过渡语让学生进入到下面的学习中呢?而没有必要非要设计出两个“自学指导”让学生按步就搬地往下走,而且让学生对比着去感受一个数“因数和倍数”的求法的不同,比先学例1再学例2的方式更容易让学生发现不同,得到方法,加深对知识的理解,同时也更加体现了学生的自主性,这才是模式的真正目的所在。内涵比形式更重要,发现比引导更有效!倍数和因数教学反思冀教版【第五篇】1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法,能在1~100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。2、使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。智力题:有三个人,他们中有2个爸爸,2个儿子,这是10/15怎么回事?教师