参考资料,少熬夜!高一数学教案(精选5篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“高一数学教案(精选5篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高一数学公开课教案【第一篇】教学目标会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。重点函数单调性的证明及判断。难点函数单调性证明及其应用。一、复习引入1、函数的定义域、值域、图象、表示方法2、函数单调性(1)单调增函数(2)单调减函数(3)单调区间二、例题分析例1、画出下列函数图象,并写出单调区间:(1)(2)(2)例2、求证:函数在区间上是单调增函数。例3、讨论函数的单调性,并证明你的结论。变(1)讨论函数的单调性,并证明你的结论变(2)讨论函数的单调性,并证明你的结论。例4、试判断函数在上的单调性。三、随堂练习1、判断下列说法正确的是。(1)若定义在上的函数满足,则函数是上的单调增函数;(2)若定义在上的函数满足,则函数在上不是单调减函数;(3)若定义在上的函数在区间上是单调增函数,在区间上也是单调增函数,则函数是上的单调增函数;(4)若定义在上的函数在区间上是单调增函数,在区间上也是单调增函数,则函数是上的单调增函数。2、若一次函数在上是单调减函数,则点在直角坐标平面的()A.上半平面B.下半平面C.左半平面D.右半平面3、函数在上是______;函数在上是______。3、下图分别为函数和的图象,求函数和的单调增区间。参考资料,少熬夜!4、求证:函数是定义域上的单调减函数。四、回顾小结1、函数单调性的判断及证明。课后作业一、基础题1、求下列函数的单调区间(1)(2)2、画函数的图象,并写出单调区间。二、提高题3、求证:函数在上是单调增函数。4、若函数,求函数的单调区间。5、若函数在上是增函数,在上是减函数,试比较与的大小。三、能力题6、已知函数,试讨论函数f(x)在区间上的单调性。变(1)已知函数,试讨论函数f(x)在区间上的单调性。高一数学下学期教学工作总结【第二篇】本学期我继续担任G1401、G1402班的数学课教师,1班48人,2班66人。2班属于高一年级的重点班,1班属于高一年级的实验班。上学期期末考试的数学平均成绩,2班稍落后于年级同类班级,这学期来,我努力改进教育教学思路和方法,切实抓好教育教学的各个环节,认真引导学生理解和巩固基础知识和基本技能,无论从学习态度还是学习方法上都有了明显的进步,取得了应有的成绩。现将本学期的教学工作总结如下:一、备课分备教材和备学生两部分,二者相辅相成,互相影响。备教材就是根据所学内容设计课堂教学情景,力争做到深入浅出,生动活泼,方法灵活,讲练结合,真正体现学生的主体作用和教师的主导作用;备学生指的是全面掌握学生学习数学的现状,依据学生的学习态度、水平设计合理恰当的教学氛围,充分考虑学生的智力发展水平,扩展学生的认知领域,为学生提供思维训练的平台,创设熟悉易懂的学习情景,为学生的心理发展和知识积累提供可能。备课中一定要注意从学生的实际出发,从教材的实际内容出发,这样二者兼顾才能提高备课的针对性、有效性。二、上课是教学活动的主要环节,也是教学工作的关键阶段。上课要坚持以学生活动为中心,面向全体学生授课,以启发式为主,兼顾个别学生,从听讲、笔记、练习、反馈等环节入手,引导学生积极参与学习活动,理解和掌握基本概念和基本技能,使学生在学习活动过程中不仅获得知识还要提高解决问题的能力,不光获得应有的智慧,也应掌握思考问题的思想方法。对概念课采用启发引导式,引导学生理解和掌握新概念产生的背景,发生发展的过程,展示新旧知识之间的内在联系,加深对概念的理解和掌握;对巩固课坚持“精讲多练”,精选典型例题,引导学生仔细分析问题的特点,寻求解决问题的思参考资料,少熬夜!路和方法,提出合理的解决方案,力争使讲解通俗易懂,使方法融会贯通,并让学生在练习中加以消化,真正提高学生分析问题解决问题的能力。三、作业包括课本上的练习、习题、以及课外作业,针对学生的不同层次提出不同的要求:练习题要求全体学生尽量当堂完成,并及时进行讲解;习题中的A组题挑选有针对性的题目作为书面作业,要求学生课后独立完成,全批全改,深入了解学生对新知识新概念及新方法的掌握情况,B组题适当地对学有余力的学生提出要求,并及时给与提示,以求进一步提高;课外作业则根据实际情况灵活把握,精选题目,不求数量而求质量,加强和深化学生对概念公式的理解和掌握,特别是对学生作业中出现的错误及时予以纠正,以积累学生的解题经验,提高认识。四、辅导主要是指导学生及时旧课,预习新课,特别是对学生中存在的问题或集中讲解,或个别答疑,以求真正地使学生的数学学习保证持续性,建立知识网络的联系,引导学生从系统的高度,整体上把握数学知识,概念和方法。尤其是在课后辅导中更多地关注学习基础薄弱的学生,帮助他们树立了学习数学的信心,使他们得到了应有的进步。总之,教学工作不仅仅要落实常规,还要因地制宜,与时俱进,针对学生的具体情况采取相应的措施与办法,有计划有落实有检查,关注每一个学生,关注每一个课堂,关注每一个环节,从小处着眼,从细处着手。只有这样才有利于教学质量的提高,有利于学生身心的健康发展。高一数学教案【第三篇】教学目标1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式认识等比数列的性质,能解决某些实际问题。2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。教学建议教材分析(1)知识结构等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研参考资料,少熬夜!究图像,又给出等比中项的概念,最后是通项公式的应用。(2)重点、难点分析教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点。③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义。也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解。(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法。启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。教学设计示例课题:等比数列的概念教学目标1.通过教学使学生理解等比数列的概念,推导并掌握通项公式。2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力。3.培养学生勤于思考,实事求是的精神,及严谨的科学态度。教学重点,难点重点、难点是等比数列的定义的归纳及通项公式的推导。教学用具投影仪,多媒体软件,电脑。教学方法参考资料,少熬夜!讨论、谈话法。教学过程一、提出问题给出以下几组数列,将它们分类,说出分类标准。(幻灯片)①-2,1,4,7,10,13,16,19,…②8,16,32,64,128,256,…③1,1,1,1,1,1,1,…④243,81,27,9,3,1,,,…⑤31,29,27,25,23,21,19,…⑥1,-1,1,-1,1,-1,1,-1,…⑦1,-10,100,-1000,10000,-100000,…⑧0,0,0,0,0,0,0,…由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题。假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列。(这里播放变形虫分裂的多媒体软件的第一步)等比数列(板书)1.等比数列的定义(板书)根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义。学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的。教师写出等比数列的定义,标注出重点词语。请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列。学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例。而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列。教师追问理由,引出对等比数列的认识:2.对定义的认识(板书)(1)等比数列的首项不为0;(2)等比数列的每一项都不为0,即;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?参考资料,少熬夜!(3)公比不为0.用数学式子表示等比数列的定义。是等比数列①.在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为是等比数列?为什么不能?式子给出了数列第项与第项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式。3.等比数列的通项公式(板书)问题:用和表示第项.①不完全归纳法②叠乘法,…,,这个式子相乘得,所以.(板书)(1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式。(板书)(2)对公式的认识由学生来说,最后归结:①函数观点;②方程思想(因在等差数列中已有认识,此处再复习巩固而已).这里强调方程思想解决问题。方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究。同学可以试着编几道题。三、小结1.本节课研究了等比数列的概念,得到了通项公式;2.注意在研究内容与方法上要与等差数列相类比;3.用方程的思想认识通项公式,并加以应用。高一数学教学计划【第四篇】高一年级学生对学习缺乏热情,学习习惯不好,学生学习动机不明确,这给教学工作带来了一定的难度,课堂上能听讲,但是课后不归纳总结,不做题,学习效率低。另外,高中数学知识难度大,学生基础差,导致学生兴趣下降。学生意志薄弱,耐挫力差。许多学生意志不坚定,因此很多学生坚持性差,意志薄弱,一旦碰到困难便打退堂鼓,害怕去学、去动脑,长期下去,便产生厌学情绪。针对这种情况,特作以下