相反数教案精编5篇

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

好文供参考!1/15相反数教案精编5篇【引读】这篇优秀的文档“相反数教案精编5篇”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!相反数13.的相反数是.例,……随堂练习答案1.略2.CBD作业答案(一)必做题:1.(1),,(2),32.16,-20,50,,(二)选作题:1.(1)6,(2)92.(1);(2).相反数教案2相反数一、学习与导学目标:知识与技能:借助数轴理解相反数的好处,懂得数轴上表好文供参考!2/15示相反数的两个点关于原点对称,会求有理数的相反数;过程与方法:经历概念的生成、应用,体会相反数的好处,简化数的符号,学习观察、归纳、概括的策略与方法;情感态度:透过师生、生生合作学习,促进交流,激发兴趣。二、学程与导程活动:A、准备活动:1、师生游戏“唱反调”:我们明白在小学学过的0以外的数前面加上负号“-”的数就是负数。此刻我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-、,学生很快说出-3、-1、1/2、、-。2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可推荐生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。B、学习概念:1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同好文供参考!3/15的两个数给它一个什么样的关系名称适宜呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。一般地,a和-a互为相反数。“-a”可读成“a的相反数”。2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)3、从上述好处上看,你看如何规定0的相反数更为合理?商讨得:0的相反数仍是0,即0的相反数等于它本身。C、应用举例:1、两人一组,一人任说一个有理数,请同伴说出它的相反数。2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。结合前面相反数好处的量的学习,还可赋予-(-5)怎样的好处,从而帮忙自己理解-(-5)=5吗?4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?+(-2/3),-(-2/3),-(+2/3),+(+2/3)好文供参考!4/15你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。5、若a=-5,则-a=;若-x=7,则x=。三、笔记与板书提纲:课题应用举例中的2活动引例应用举例中的4(学生练习),5概念四、练习与拓展选题:1、教科书P18/3;2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。相反数3教学目标1.使学生理解相反数的意义;2.使学生掌握求一个已知数的相反数;3.培养学生的观察、归纳与概括的能力.教学重点和难点重点:理解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点:多重符号的化简.好文供参考!5/15课堂教学过程设计一、从学生原有的认知结构提出问题二、师生共同研究相反数的定义特点?引导学生回答:符号不同,一正一负;数字相同.像这样,只有符号不同的两个数,我们说它们互为相反数,如+5与应点有什么特点?引导学生回答:分别在原点的两侧;到原点的距离相等.这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为相反数.这个概念很重要,它帮助我们直观地看出相反数的意义,所以有的书上又称它为相反数的几何意义.3.0的相反数是0.这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是相反数等于它本身的唯一的数.三、运用举例变式练习例1(1)分别写出9与-7的相反数;例1由学生完成.在学习有理数时我们就指出字母可以表示一切有理数,那么数a的相反数如何表示?引导学生观察例1,自己得出结论:好文供参考!6/15数a的相反数是-a,即在一个数前面加上一个负号即是它的相反数.1.当a=7时,-a=-7,7的相反数是-7;2.当-5时,-a=-(-5),读作“-5的相反数”,-5的相反数是5,因此,-(-5)=5.3.当a=0时,-a=-0,0的相反数是0,因此,-0=0.么意思?引导学生回答:-(-8)表示-8的相反数;-(+4)表示+4的相反数;例2简化-(+3),-(-4),+(-6),+(+5)的符号.能自己总结出简化符号的规律吗?括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.课堂练习1.填空:(1)+的相反数是______;(2)-3的相反数是______;(5)-(+4)是______的相反数;(6)-(-7)是______的相反数.2.简化下列各数的符号:-(+8),+(-9),-(-6),-(+7),+(+5).3.下列两对数中,哪些是相等的数?哪对互为相反数?-(-8)与+(-8);-(+8)与+(-8).四、小结好文供参考!7/15指导学生阅读教材,并总结本节课学习的主要内容:一是理解相反数的定义――代数定义与几何定义;二是求a的相反数;三是简化多重符号的问题.五、作业1.分别写出下列各数的相反数:2.在数轴上标出2,-,0各数与它们的相反数.3.填空:(1)-是______的相反数,______的相反数是-.4.化简下列各数:5.填空:(1)如果a=-13,那么-a=______;(2)如果a=-,那么-a=______;(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.课堂教学设计说明教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的.由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.好文供参考!8/15探究活动有理数a、b在数轴上的位置如图:将a,-a,b,-b,1,-1用“<”号排列出来.分析:由图看出,a>1,-1<b<0,|b|<1<|a|.-a,-b分别是a和b的相反数,数轴上表示a和-a,b和-b的点都关于原点对称,它们到原点的距离分别相等,用这个性质在数轴上画出表示-a,-b的点,它们的大小也就排列出来了.解:在数轴上画出表示-a、-b的点:由图看出:-a<-1<b<-b<1<a.点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.相反数4一、素质教育目标(一)知识教学点1.了解:互为相反数的几何意义.2.掌握:给出一个数能求出它的相反数.(二)能力训练点1.训练学生会利用数轴采用数形结合的方法解决问题.2.培养学生自己归纳总结规律的能力.(三)德育渗透点1.通过解释相反数的几何意义,进一步渗透数形结合的好文供参考!9/15思想.2.通过求一个数的相反数,使学生进一步认识对应、统一规律.(四)美育渗透点1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的完整美.2.通过简化一个数的符号,使学生进一步体会数学的简洁美.二、学法引导1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.2.学生学法:感性认识→理性认识→练习反馈→总结.三、重点、难点、疑点及解决办法1.重点:求已知数的相反数.2.难点:根据相反数的意义化简符号.四、课时安排1课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.好文供参考!10/15七、教学步骤(一)探索新知,导入新课1.互为相反数的概念的引出演示活动:要一个学生向前走5步,向后走5步.提出问题“如果向前为正,向前走5步,向后走5步各记作什么?学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.[板书]+5,-5师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.[板书]相反数教法说明由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)好文供参考!11/15[板书]只有符号不同的两个数,其中一个叫另一个的相反数.教法说明在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机―利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.2.理解概念(出示投影1)判断:(1)-5是5的相反数()(2)5是-5的相反数()(3)与互为相反数()(4)-5是相反数()学生活动:学生讨论.教法说明对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.数学《相反数》教案5教学流程:一、创设情境,导入新课好文供参考!12/15师生互动:师要求二个学生在课桌前背靠背站好(分左右),听教师口令:“向前3步走”。师:规定向右为正(正号可以省略),向右走3步,向左走3步各记作什么?生:向右走3步记作3步;向左走3步记作-3步。师:规定两个同学未走时的点为原点,用上一节课学的数轴将上述问题情境中的3和-3表示出来。生:画数轴,在数轴上标出表示3和-3的点。师:从数轴上观察,这两个数分别在数轴上原点的什么位置,距离是多少?生:在数轴上原点的两侧,并且到原点的距离相等。(关于原点对称)师:在代数中,把具有上述特点的两个数称为互为相反数,今天我们就来学习相反数的概念。二、启发思考,学习新课师:在数轴上还能找出这样的数吗?举例说明生举例,师板书师:观察黑板上的各组数它们的相同点和不同点是什么?生1:都是一个正数一个负数。师:回答很好。还这其他说法吗?生2:2和-2的数字相同(都是2),但性质符号不同。师:你能给出相反数的定义吗?好文供参考!13/15师板书,同时分析定义强调“只有”“互为”。如果有学生对“0”提出疑问,师讲解,如果没有互动时师提出。师生互动:小组抢答求一个数的相反数。师:如何求一个数的相反数,数a的相反数又是什么?生:最后得出结论“a的相反数是-a”。师强调:“a的相反数是-a”还可说成“a和-a互为相反数”,“a”可表示任意数(正数、负数、0),求一个数的相反数就是在这个数前加一个“-”号。师问:把a分别换成+5,-7,0时,这些数的相反数怎样表示?生思考后答:求任意一个数的相反数可以在这个数前加一个“-”号,即:+5的相反数表示为-(+5),-7的相反数表示为-(-7),0的相反数是-0。师再提出问题:在一个数的前面加上“-”号表示这个数的相反数,那么-(+)表示什么意思?-(-7)呢,-(-)呢?它们的结果应是多少?学生活动:讨论、分析、思考后回答:生1:-(+)表示+的相反数

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功