好文供参考!1/14高一数学必修五《等比数列》教案精编4篇【引读】这篇优秀的文档“高一数学必修五《等比数列》教案精编4篇”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!推荐等比数列教案1熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。复习要求熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。方法规律应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。一、基础训练1、某种细菌在培养过程中,每20分钟x一次一个x为两好文供参考!2/14个,经过3小时,这种细菌由1个可繁殖成a、511b、512c、1023d、10242、若一工厂的生产总值的月平均增长率为p,则年平均增长率为a、b、c、d、二、典型例题例1:某人每期期初到银行存入一定金额a,每期利率为p,到第n期共有本金na,第一期的利息是nap,第二期的利息是n—1ap……,第n期即最后一期的利息是ap,问到第n期期末的本金和是多少?评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗好文供参考!3/14争,到1999年底全地区的绿化率已达到30%,从2000年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。教学过程2一、提出问题给出以下几组数列,将它们分类,说出分类标准。(幻灯片)①-2,1,4,7,10,13,16,19,…②8,16,32,64,128,256,…③1,1,1,1,1,1,1,…④243,81,27,9,3,1,,,…好文供参考!4/14⑤31,29,27,25,23,21,19,…⑥1,-1,1,-1,1,-1,1,-1,…⑦1,-10,100,-1000,10000,-100000,…⑧0,0,0,0,0,0,0,…由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)。二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题。假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的'共同特性,这是我们将要研究的另一类数列——等比数列。(这里播放变形虫分裂的多媒体软件的第一步)等比数列(板书)1、等比数列的定义(板书)根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义。学生一般回答可能不够完美,多数情况下,有好文供参考!5/14了等差数列的基础是可以由学生概括出来的。教师写出等比数列的定义,标注出重点词语。请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列。学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例。而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列。教师追问理由,引出对等比数列的认识:2、对定义的认识(板书)(1)等比数列的首项不为0;(2)等比数列的每一项都不为0,即;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?(3)公比不为0.用数学式子表示等比数列的定义。是等比数列①。在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为是等比数列?为什么不能?式子给出了数列第项与第项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式。好文供参考!6/143、等比数列的通项公式(板书)问题:用和表示第项。①不完全归纳法。②叠乘法,…,,这个式子相乘得,所以。(板书)(1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式。(板书)(2)对公式的认识由学生来说,最后归结:①函数观点;②方程思想(因在等差数列中已有认识,此处再复习巩固而已)。这里强调方程思想解决问题。方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题)。解题格式是什么?(不仅要会解题,还要注意规范表述的训练)如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究。同学可以试着编几道题。三、小结1、本节课研究了等比数列的概念,得到了通项公式;2、注意在研究内容与方法上要与等差数列相类比;3、用方程的思想认识通项公式,并加以应用。好文供参考!7/14四、作业(略)五、板书设计三。等比数列1、等比数列的定义2、对定义的认识3、等比数列的通项公式(1)公式(2)对公式的认识等比数列3教学目标1.把握等比数列前项和公式,并能运用公式解决简单的问题。(1)理解公式的推导过程,体会转化的思想;(2)用方程的思想熟悉等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想。3.通过公式推导的教学,对学生进行思维的严谨性的练习,培养他们实事求是的科学态度。教学建议教材分析好文供参考!8/14(1)知识结构先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和。(2)重点、难点分析教学重点、难点是等比数列前项和公式的推导与应用。公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是把握推导公式的方法。等比数列前项和公式是分情况讨论的,在运用中要非凡注重和两种情况。教学建议(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题。(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证实结论。(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的爱好。(4)编拟例题时要全面,不要忽略的情况。(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大。好文供参考!9/14(6)补充可以化为等差数列、等比数列的数列求和问题。教学设计示例课题:等比数列前项和的公式教学目标(1)通过教学使学生把握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质。(3)通过教学进一步渗透从非凡到一般,再从一般到非凡的辩证观点,培养学生严谨的学习态度。教学重点,难点教学重点是公式的推导及运用,难点是公式推导的思路。教学用具幻灯片,课件,电脑。教学方法引导发现法。教学过程一、新课引入:(问题见教材第129页)提出问题:(幻灯片)二、新课讲解:记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消。好文供参考!10/14(板书)即,①,②②-①得即.由此对于一般的等比数列,其前项和,如何化简?(板书)等比数列前项和公式仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即(板书)③两端同乘以,得④,③-④得⑤,(提问学生如何处理,适时提醒学生注重的取值)当时,由③可得(不必导出④,但当时设想不到)当时,由⑤得.于是反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列。(板书)例题:求和:.设,其中为等差数列,为等比数列,公比为,利用错位相减法求和。解:,两端同乘以,得,好文供参考!11/14两式相减得于是.说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题。公式其它应用问题注重对公比的分类讨论即可。三、小结:1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;2.用错位相减法求一些数列的前项和。四、作业:略.五、板书设计:等比数列前项和公式例题等比数列4教学设计示例课题:等比数列前项和的公式教学目标(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质。(3)通过教学进一步渗透从特殊到一般,再从一般到特好文供参考!12/14殊的辩证观点,培养学生严谨的学习态度。教学重点,难点教学重点是公式的推导及运用,难点是公式推导的思路。教学用具幻灯片,课件,电脑。教学方法引导发现法。教学过程一、新课引入:(问题见教材第129页)提出问题:(幻灯片)二、新课讲解:记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消。(板书)即,①,②②-①得即.由此对于一般的等比数列,其前项和,如何化简?(板书)等比数列前项和公式仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即(板书)③两端同乘以,得好文供参考!13/14④,③-④得⑤,(提问学生如何处理,适时提醒学生注意的取值)当时,由③可得(不必导出④,但当时设想不到)当时,由⑤得.于是反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列。(板书)例题:求和:.设,其中为等差数列,为等比数列,公比为,利用错位相减法求和。解:,两端同乘以,得,两式相减得于是.说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题。公式其它应用问题注意对公比的分类讨论即可。三、小结:1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;好文供参考!14/142.用错位相减法求一些数列的前项和。四、作业:略。五、板书设计:等比数列前项和公式例题