1、如图,折叠宽度相等的长方形纸条,若∠1=63°,则∠2=()度2、如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.1、542、解:(1)因为CB∥OA,∠C=∠OAB=100°,所以∠COA=180°-100°=80°,又因为E、F在CB上,∠FOB=∠AOB,OE平分∠COF,所以∠EOB=∠COA=×80°=40°.(2)不变,因为CB∥OA,所以∠CBO=∠BOA,又∠FOB=∠AOB,所以∠FOB=∠OBC,而∠FOB+∠OBC=∠OFC,即∠OFC=2∠OBC,所以∠OBC:∠OFC=1:2.(3)存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.理由如下:因为∠COE+∠CEO+∠C=180°,∠BOA+∠OAB+∠ABO=180°,且∠OEC=∠OBA,∠C=∠OAB=100°,所以∠COE=∠BOA,又因为∠FOB=∠AOB,OE平分∠COF,所以∠BOA=∠BOF=∠FOE=∠EOC=∠COA=20°,所以∠OEC=∠OBA=60°.在△ABC中,AP为∠A的平分线,AM为BC边上的中线,过B作BH⊥AP于H,AM的延长线交BH于Q,求证:PQ∥AB。证明:延长AM至A',使AM=MA',连结BA',如图∠A'BQ=180°-(∠HBA+∠BAH+∠CAP)=180°-90°-∠CAP=90°-∠BAP=∠ABQ∵∴∵∴∴∴∴PQ∥AB如图已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠BFD=112°,求∠E的度数。解:作GE∥AB,FH∥CD∴∠ABF=∠BFH∠HFD=∠CDF∵FB为∠ABE的平分线∴∠ABF=∠FBE=∠ABE∵FD为∠CDE的平分线∴∠CDF=∠EDF=∠CDE∵∠BFD=112°∴∠ABE+∠CDE=2∠ABF+2∠CDF=2∠BFH+2∠HFD=2∠BFD∴∠ABE+∠CDE=2×112°=224°∵AB∥CD∴EG∥CD∴∠ABE+∠BEG=180°∠CDE+∠GED=180°∴ABE+∠BEG+∠CDE+∠GED=360°∴∠BEG+∠GED=136°