人教版七年级数学知识点总结1第一章有理数(一)正负数1.正数:大于0的数。2.负数:小于0的数。3.0即不是正数也不是负数。4.正数大于0,负数小于0,正数大于负数。(二)有理数1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)2.整数:正整数、0、负整数,统称整数。3.分数:正分数、负分数。(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)2.数轴的三要素:原点、正方向、单位长度。3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。(四)有理数的加减法1.先定符号,再算绝对值。人教版七年级数学知识点总结22.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a−b=a+(−b)减去一个数,等于加这个数的相反数。(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。2.乘积是1的两个数互为倒数。3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。2.除以一个不等于0的数,等于乘这个数的倒数。3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是人教版七年级数学知识点总结30。3.同底数幂相乘,底不变,指数相加。4.同底数幂相除,底不变,指数相减。(八)有理数的加减乘除混合运算法则1.先乘方,再乘除,最后加减。2.同级运算,从左到右进行。3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。(九)科学记数法、近似数、有效数字。第二章整式(一)整式1.整式:单项式和多项式的统称叫整式。2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。3.系数;一个单项式中,数字因数叫做这个单项式的系数。4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。5.多项式:几个单项式的和叫做多项式。6.项:组成多项式的每个单项式叫做多项式的项。7.常数项:不含字母的项叫做常数项。8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项人教版七年级数学知识点总结4叫做同类项。10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变第三章一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。(二)一元一次方程。1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。2.解:求出的方程中未知数的值叫做方程的解。(二)等式的性质1.等式两边加(或减)同一个数(或式子),结果仍相等。人教版七年级数学知识点总结5如果a=b,那么a±c=b±c2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。如果a=b,那么ac=bc;如果a=b,(c‡0),那么a∕c=b∕c。(三)解方程的步骤解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。1.去分母:把系数化成整数。2.去括号3.移项:把等式一边的某项变号后移到另一边。4.合并同类项5.系数化为1第四章图形认识初步一、图形认识初步1.几何图形:把从实物中抽象出来的各种图形的统称。2.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。3.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。5.点,线,面,体人教版七年级数学知识点总结6①图形是由点,线,面构成的。②线与线相交得点,面与面相交得线。③点动成线,线动成面,面动成体。二、直线、线段、射线1.线段:线段有两个端点。2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。3.直线:将线段的两端无限延长就形成了直线。直线没有端点。4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。5.相交:两条直线有一个公共点时,称这两条直线相交。6.两条直线相交有一个公共点,这个公共点叫交点。7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)9.距离:连接两点间的线段的长度,叫做这两点的距离。三、角1.角:有公共端点的两条射线组成的图形叫做角。2.角的度量单位:度、分、秒。3.角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。4.角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。人教版七年级数学知识点总结7②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。④工具:量角器、三角尺、经纬仪。5.余角和补角①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。③补角的性质:等角的补角相等④余角的性质:等角的余角相等人教版七年级数学知识点总结8第五章相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,与互为邻补角。+=180°;+=180°;平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线43214321____________________________:图11342人教版七年级数学知识点总结9+=180°;+=180°。4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;=。5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。性质3:如图2所示,当a⊥b时,====90°。点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。图3中,共有对同位角:与是图21342ab图3a57861342bc人教版七年级数学知识点总结10同位角;与是同位角;与是同位角;与是同位角。②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行线的性质:性质1:两直线平行,同位角相等。如图4所示,如果a∥b,则=;=;=;=。性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则=;=。性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+=180°;+=180°。性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,图4a57861342bc图5a57861342bc人教版七年级数学知识点总结11则∥。8、平行线的判定:判定1:同位角相等,两直线平行。如图5所示,如果=或=或=或=,则a∥b。判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b。判定3:同旁内角互补,两直线平行。如图5所示,如果+=180°;+=180°,则a∥b。判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。9、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。平移后,新图形与原图形的形状和大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应人教版七年级数学知识点总结12线段相等;③对应角相等。第六章实数【知识点一】实数的分类1、按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相