二次根式知识点总结(最新5篇)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

参考资料,少熬夜!二次根式知识点总结(最新5篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“二次根式知识点总结(最新5篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!二次根式教案【第一篇】学习目标1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。2、过程与方法:进一步体会分类讨论的数学思想。3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。学习重难点1、重点:准确理解二次根式的概念,并能进行简单的计算。2、难点:准确理解二次根式的双重非负性。学习内容课本第2―3页学习流程一、课前准备(预习学案见附件1)学生在家中认真阅读理解课本中相关内容的知识,并根据自己的'理解完成预习学案。二、课堂教学(一)合作学习阶段。教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。(二)集体讲授阶段。(15分钟左右)1.各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。2.教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。3.各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。(三)当堂检测阶段为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)三、课后作业(课后作业见附件2)教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。参考资料,少熬夜!四、板书设计课题:二次根式(1)二次根式概念例题例题二次根式性质反思:二次根式教案【第二篇】目标1.熟练地运用二次根式的性质化简二次根式;2.会运用二次根式解决简单的实际问题;3.进一步体验二次根式及其运算的实际意义和应用价值。教学设想本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。教学程序与策略一、预习检测:1.解决节前问题:如图,架在消防车上的云梯AB长为15m,AD:BD=1:,云梯底部离地面的距离BC为2m。你能求出云梯的顶端离地面的距离AE吗?归纳:在日常生活和生产实际中,我们在解决一些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。二、合作交流:1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:,滑梯CD的坡比为1:,AE=米,BC=CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到米)让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?注意解题格式教学程序与策略三、巩固练习:完成课本P17、1,组长检查反馈;四、拓展提高:1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。(1)分别求出3张长方形纸条的长度。(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。师生共同分析解题思路,请学生写出解题过程。五、课堂小结:参考资料,少熬夜!1.谈一谈:本节课你有什么收获?2.运用二次根式解决简单的实际问题时应注意的的问题六、堂堂清1:作业本(2)2:课本P17页:第4、5题选做。二次根式教案【第三篇】一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y)・zx(2)(2x2y+3xy2)÷xy二、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算(1)(+6)(3-)(2)(+)(-)分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)(+6)(3-)=3-2+18-6=13-3(2)(+)(-)=()2-()2=10-7=3三、巩固练习课本P20练习1、2.四、应用拓展例3.已知=2-,其中a、b是实数,且a+b≠0,化简+,并求值.分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?二次根式知识点【第四篇】中考数学二次根式复习注意问题1.首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2、利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题参考资料,少熬夜!目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简。二次根式的基础知识1.最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。2.同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式。注意问题归纳:最简二次根式的判断方法:1.最简二次根式必须同时满足如下条件:(1)被开方数的因数是整数,因式是整式(分母中不应含有根号);(2)被开方数中不含开方开得尽的因数或因式,即被开方数的因数或因式的指数都为1.2.判断同类二次根式:先把所有的二次根式化成最简二次根式;再根据被开方数是否相同来加以判断。要注意同类二次根式与根号外的因式无关。二次根式的相关概念(1)平方根和算术平方根。一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,记为,我们规定0的算术平方根是0,即。如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫二次方根),记为±。一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。求一个数a的平方根的运算,叫做开平方。(2)立方根。如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根。正数的立方根是正数;0的立方根是0;负数的立方根是负数。二次根式数学教案【第五篇】教学内容二次根式的加减教学目标知识与技能目标:理解和掌握二次根式加减的方法。过程与方法目标:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解。再总结经验,用它来指导根式的计算和化简。情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力。重难点关键1.重点:二次根式化简为最简根式。参考资料,少熬夜!2.难点关键:会判定是否是最简二次根式。教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读,与同类项进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。学法:1、类比的方法通过观察、类比,使学生感悟二次根式加减的模型,形成有效的学习策略。2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。知识点自主检测、同伴互查1、师生共同解决“学法”问题与13页“练习1”;2、学生演板13页“练习2、3”。四、知识梳理、师生共议1、谈收获:(1)二次根式的加减法则是什么?有哪些运算步骤?(2)怎样合并被开方数相同的二次根式呢?(3)二次根式进行加减运算时应注意什么问题?2、说不足:。五、作业训练、巩固提高1、必做题:课本15页的“习题2、3”;课时练习1.揭示学法、自主学习认真阅读课本14页内容,完成下列任务:1、完成14页“例3、4”,先做再对照:(1)平方差公式__________,完全平方公式__________.(2)每步的运算依据是什么?应注意什么问题?(时间7分钟若有困难,与同伴讨论)三、自主检测、同伴互查1、师生共同解决“学法”问题;2、学生演板14页“练习1、2”。四、知识梳理、师生共议1、谈收获:(1)二次根式进行混合运算时运用了哪些知识?(2)二次根式进行混合运算时应注意哪些问题?

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功