参考资料,少熬夜!高中数学说课稿精编5篇【导读指引】三一刀客最漂亮的网友为您整理分享的“高中数学说课稿精编5篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高中数学说课稿1今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。一、说教材1、本节在教材中的地位和作用:本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。2.教学目标确定:(1)能力训练要求①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。(2)德育渗透目标①培养学生善于通过观察分析实物形状到归纳其性质的能力。②提高学生对事物的感性认识到理性认识的能力。③培养学生“理论源于实践,用于实践”的观点。3.教学重点、难点确定:重点:1.棱锥的截面性质定理2.正棱锥的性质。难点:培养学生善于比较,从比较中发现事物与事物的区别。二、说教学方法和手段1、教法:“以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。2、教学手段:根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,参考资料,少熬夜!并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。三、说学法:这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。四、学程序:[复习引入新课]1.棱柱的性质:(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面是平行四边形2.几个重要的四棱柱:平行六面体、直平行六面体、长方体、正方体思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?[讲授新课]1、棱锥的基本概念(1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念(2).棱锥的表示方法、分类2、棱锥的性质(1).截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’。证明:(略)引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。(2).正棱锥的定义及基本性质:正棱锥的定义:①底面是正多边形②顶点在底面的射影是底面的中心①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三参考资料,少熬夜!角形引申:①正棱锥的侧棱与底面所成的角都相等;②正棱锥的侧面与底面所成的二面角相等;(3)正棱锥的各元素间的关系下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。引申:①观察图中三棱锥S-OBM的侧面三角形状有何特点?(可证得∠SOM=∠SOB=∠SMB=∠OMB=900,所以侧面全是直角三角形。)②若分别假设正棱锥的高SO=h,斜高SM=h’,底面边长的一半BM=a/2,底面正多边形外接圆半径OB=R,内切圆半径OM=r,侧棱SB=L,侧面与底面的二面角∠SMO=α,侧棱与底面组成的角∠SBO=β,∠BOM=1800/n(n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。(课后思考题)[例题分析]例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥(答案:D)例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。﹙解析及图略﹚例3.已知正四棱锥的棱长和底面边长均为a,求:(1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦﹙解析及图略﹚[课堂练习]1、知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。﹙解析及图略﹚2、锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。﹙解析及图略﹚[课堂小结]一:棱锥的基本概念及表示、分类二:棱锥的性质截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比引申:如果棱锥被平行于底面的平面所截,则截得的小棱参考资料,少熬夜!锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。2.正棱锥的定义及基本性质正棱锥的定义:①底面是正多边形②顶点在底面的射影是底面的中心(1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;(2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形引申:①正棱锥的侧棱与底面所成的角都相等;②正棱锥的侧面与底面所成的二面角相等;③正棱锥中各元素间的关系[课后作业]1:课本P52习题:2、42:课时训练:训练一高中数学说课稿2本节课讲述的是人教版高一数学(上)等差数列(第一课时)的内容。一、教材分析1、教材的地位和作用:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。2、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。3、教学重点和难点参考资料,少熬夜!根据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。②等差数列的通项公式的推导过程及应用。由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。二、学情教法分析:对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。三、学法指导:在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。四、教学程序本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。(一)复习引入:1、从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。2、小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92①3、小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25②通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。(二)新课探究1、由引入自然的给出等差数列的概念:参考资料,少熬夜!如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调:①“从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d(n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。1、9,8,7,6,5,4,??;√d=-12、,,,,??;√d=3、0,0,0,0,0,0,??。;√d=04、1,2,3,2,3,4,??;×5、1,0,1,0,1,??×其中第一个数列公差0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。若一等差数列{an}的首项是a1,公差是d,则据其定义可得:a2-a1=d即:a2=a1+da3–a2=d即:a3=a2+d=a1+2da4–a3=d即:a4=a3+d=a1+3d??猜想:a40=a1+39d,进而归纳出等差数列的通项公式:an=a1+(n-1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:a2–a1=da3–a2=da4–a3=d??an–an-1=d将这(n-1)个等式左右两边分别相加,就可以得到an–a1=(n-1)d即an=a1+(n-1)d(1)参考资料,少熬夜!当n=1时,(1)也成立,所以对一切n∈N﹡,上面的公式都成立因此它就是等差数列{an}的通项公式。在迭加法的证明过程中,我采用启发式教学方法。利用等差数列概念启发学生写出n-1个等式。对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想”的教学要求接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是: