参考资料,少熬夜!初中数学重要知识点总结实用5篇【导读指引】三一刀客最漂亮的网友为您整理分享的“初中数学重要知识点总结实用5篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!初中数学重要知识点总结11、多项式有有限个单项式的代数和组成的式子,叫做多项式。多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。4、一元多项式的根一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。多项式的加、减法,乘法1、多项式的加、减法2、多项式的乘法单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。3、多项式的乘法多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。常用乘法公式公式I平方差公式a+ba—b=a^2—b^2两个数的和与这两个数的差的积等于这两个数的平方差。中考初中数学知识点总结2参考资料,少熬夜!顾名思义。中位线就是图形的中点的连线,包括三角形中位线和梯形中位线两种。中位线中位线概念(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。注意:(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。初中数学知识点总结3三角和的公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)倍角公式tan2A=2tanA/(1-tan2A)Sin2A=2SinA?CosACos2A=Cos^2A--Sin2A=2Cos2A-1=1-2sin^2A三倍角公式sin3A=3sinA-4(sinA)3;cos3A=4(cosA)3-3cosAtan3a=tana?tan(π/3+a)?tan(π/3-a)三角函数特殊值α=0°sinα=0cosα=1tαnα=0cotα→∞secα=1cscα→∞α=15°(π/12)sinα=(√6-√2)/4cosα=(√6+√2)/4tαnα=2-√3cotα=2+√3secα=√6-√2cscα=√6+√2α=°(π/8)sinα=√(2-√2)/2cosα=√(2+√2)/2tαnα=√2-1cotα=√2+1secα=√(4-2√2)cscα=√(4+2√2)a=30°(π/6)sinα=1/2cosα=√3/2tαnα=√3/3参考资料,少熬夜!cotα=√3secα=2√3/3cscα=2α=45°(π/4)sinα=√2/2cosα=√2/2tαnα=1cotα=1secα=√2cscα=√2α=60°(π/3)sinα=√3/2cosα=1/2tαnα=√3cotα=√3/3secα=2cscα=2√3/3α=°(3π/8)sinα=√(2+√2)/2cosα=√(2-√2)/2tαnα=√2+1cotα=√2-1secα=√(4+2√2)cscα=√(4-2√2)α=75°(5π/12)sinα=(√6+√2)/4cosα=(√6-√2)/4tαnα=2+√3cotα=2-√3secα=√6+√2cscα=√6-√2α=90°(π/2)sinα=1cosα=0tαnα→∞cotα=0secα→∞cscα=1α=180°(π)sinα=0cosα=-1tαnα=0cotα→∞secα=-1cscα→∞α=270°(3π/2)sinα=-1cosα=0tαnα→∞cotα=0secα→∞cscα=-1α=360°(2π)sinα=0cosα=1tαnα=0cotα→∞secα=1cscα→∞三角函数记忆顺口溜1三角函数记忆口诀“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/22符号判断口诀全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。“ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。3三角函数顺口溜三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字一,连结顶点三角形。向下三角平方和,倒参考资料,少熬夜!数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。初中数学知识点总结归纳4有理数的加法运算同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。注“大”减“小”是指绝对值的大小。有理数的减法运算减正等于加负,减负等于加正。有理数的乘法运算符号法则同号得正异号负,一项为零积是零。合并同类项说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。参考资料,少熬夜!完全平方公式二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。因式分解一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住。注一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是基础。二次三项式的'因式分解先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。参考资料,少熬夜!两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例外项积等内项积,列出方程并解之。求比值由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好办法,殊途同归会变通。正比例与反比例商定变量成正比,积定变量成反比。正比例与反比例变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不等式先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。参考资料,少熬夜!同类各项去合并,系数化“1”注意了。同乘除正无防碍,同乘除负也变号。解一元一次不等式组大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。a正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。用平方差公式因式分解异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。三正两底和平方,