太和二中排列组合练习题库赵玉苗1.世博会期间,某班有四名学生参加了志愿工作.将这四名学生分配到A、B、C三个不同的展馆服务,每个展馆至少分配一人.若甲要求不到A馆,则不同的分配方案有A.36种B.30种C.24种D.20种C【解析】可分甲在B馆或C馆两种情形:1)甲在B馆乙在A馆,则丙丁选一人在C馆,余一人任意分到三个馆中之一,若用1123CA来表示是欠妥的,因为上述的算法包含了“丙丁”、“丁丙”相同的分法,所以应有112315CA种。乙在B馆,则丙丁分别在A,C馆中,共有222A;乙在C馆,则丙丁选一人在A馆,余一人任意分到三个馆中之一,共有112315CA;此时共有1122321212CAA种。2)同理,甲在C馆共有1122321212CAA种.2.在1,2,3,4,5,6,7的任一排列1234567,,,,,,aaaaaaa中,使相邻两数都互质的排列方式种数共有()A.576B.720C.864D.1152C.解析:先让数字1,3,5,7作全排列,有4424A种,再排数字6,由于数字6不与3相邻,在排好的排列中,除3的左、右2个空隙,还有3个空隙可排数字6,故数字6[来有3种排法,最后排数字2,4,在剩下的4个空隙中排上2,4,有24A种排法,共有42443864AA种,故选C.3.在集合1,2,3,4,5中任取一个偶数a和一个奇数b构成以原点为起点的向量(,)ab.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n,其中面积不超过4的平行四边形的个数为m,则mnA.415B.13C.25D.23【答案】D基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3),3515nC由其中面积为1的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1)其中面积为2的平行四边形的个数为(2,3)(2,5);(2,1)(2,3)其中面积为3的平行四边形的个数(2,3)(4,3);(2,1)(4,5)其中面积为4的平行四边形的个数(2,1)(2,5);(4,1)(4,3);(4,3)(4,5)其中面积为5的平行四边形的个数(2,3),(4,1);(2,5)(4,5);其中面积为7的平行四边形的个数(2,5),(4,3)其中面积为8的平行四边形的个数(4,1)(4,5)其中面积为9的平行四边形的个数(2,5),(4,1)4.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有A.4种B.10种C.18种D.20种【答案】B5.设集合1,2,3,4,5,6,A}8,7,6,5,4{B则满足SA且SB的集合S为(A)57(B)56(C)49(D)8【答案】B6.给n个自上而下相连的正方形着黑色或白色。当4n时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:由此推断,当6n时,黑色正方形互不相邻的着色方案共有种,至少有两个黑色正方形相邻的着色方案共有种,(结果用数值表示)【答案】21;437.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种B.63种C.65种D.66种【答案】D【解析】从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数的取法分为三类;第一类是取四个偶数,即545C种方法;第一类是取两个奇数,两个偶数,即602425CC种方法;第三类是取四个奇数,即144C故有5+60+1=66种方法。故选D。8.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()()A12种()B10种()C种()D种【答案】A【解析】先安排老师有222A种方法,在安排学生有624C,所以共有12种安排方案,选A.9、将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,10.的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【答案】B11.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(B)(A)96(B)48(C)24(D)012.将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为(A)A.70B.140C.280D.84013、将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【解析】B:∵先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有246C,余下放入最后一个信封,∴共有24318C14、某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有(A)30种(B)36种(C)42种(D)48种解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法即2212116454432CCCCCC=42法二:分两类甲、乙同组,则只能排在15日,有24C=6种排法甲、乙不同组,有112432(1)CCA=36种排法,故共有42种方法15、某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A.504种B.960种C.1008种D.1108种解析:分两类:甲乙排1、2号或6、7号共有4414222AAA种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422AAAAA种方法故共有1008种不同的排法16、8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A)8289AA(B)8289AC(C)8287AA(D)8287AC答案:A17.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(A)(A)124414128CCC(B)124414128CAA(C)12441412833CCCA(D)12443141283CCCA18.五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(B)(A)1444CC种(B)1444CA种(C)44C种(D)44A种19.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是(D)A.168B.96C.72D.14420.4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是(B)A.48B.36C.24D.1821、由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A)72(B)96(C)108(D)144解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232AA=24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222AA=12个算上个位偶数字的排法,共计3(24+12)=108个答案:C22、如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A)288种(B)264种(C)240种(D)168种【答案】D(1)B,D,E,F用四种颜色,则有441124A种涂色方法;(2)B,D,E,F用三种颜色,则有334422212192AA种涂色方法;(3)B,D,E,F用两种颜色,则有242248A种涂色方法;所以共有24+192+48=264种不同的涂色方法。23、某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有(A)(A)30种(B)35种(C)42种(D)48种24、由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是(A)36(B)32(C)28(D)24解析:如果5在两端,则1、2有三个位置可选,排法为2×2232AA=24种如果5不在两端,则1、2只有两个位置可选,3×2222AA=12种共计12+24=36种答案:A25、现有名同学支听同时进行的个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是AA.45B.56C.5654322D.6543226、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为BA.10B.11C.12D.1527.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是BA.152B.126C.90D.54二、填空题28、在n行m列矩阵12321234113451212321nnnnnnnnnn中,记位于第i行第j列的数为(,1,2,)ijaijn。当9n时,11223399aaaa45。解析:11223399aaaa1+3+5+7+9+2+4+6+8=4529.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()A.8B.24C.48D.120【答案】C【解析】2和4排在末位时,共有122A种排法,其余三位数从余下的四个数中任取三个有3443224A种排法,于是由分步计数原理,符合题意的偶数共有22448(个).故选C.30.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.648【答案】B【解析】本题主要考查排列组合知识以及分类计数原理和分步计数原理知识.属于基础知识、基本运算的考查.首先应考虑“0”是特殊元素,当0排在末位时,有299872A(个),当0不排在末位时,有111488488256AAA(个),于是由分类计数原理,得符合题意的偶数共有72256328(个).故选B.31.从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有(B)A.300种B.240种C.144种D.96种32.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是(D)A.168B.96C.72D.14433.4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是(B)A.48B.36C.24D.1834.四棱锥的8条棱代表8